Lu | Artificial Intelligence and Robotics | Buch | 978-981-962910-7 | sack.de

Buch, Englisch, 309 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g

Reihe: Communications in Computer and Information Science

Lu

Artificial Intelligence and Robotics

9th International Symposium, ISAIR 2024, Guilin, China, September 27-30, 2024, Revised Selected Papers, Part I
Erscheinungsjahr 2025
ISBN: 978-981-962910-7
Verlag: Springer Nature Singapore

9th International Symposium, ISAIR 2024, Guilin, China, September 27-30, 2024, Revised Selected Papers, Part I

Buch, Englisch, 309 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-962910-7
Verlag: Springer Nature Singapore


This book constitutes the refereed proceedings of the 9th International Symposium Conference on Artificial Intelligence and Robotics, ISAIR 2024, in Guilin, China, in September 27–30, 2024. 

The 61 full papers presented were carefully reviewed and selected from a total of 164 submissions. The ISAIR 2024 focuses on three important areas of pattern recognition: artificial intelligence, robotics and Internet of Things, covering various technical aspects.

Lu Artificial Intelligence and Robotics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Segmentation of Crack Disaster Images Based on Deep Learning Neural Network Method.

.- Numerical Calculation and Identification of 3D Time-Invariant Freak Waves based on JONSWAP Spectrum and Donelan Direction Function.

.- Enhanced Computing for Marine Disaster Based on the Prior Dark Channel Scenes, Precise Depth Estimation and Channel-Dependent Compensation Method.

.- Semi-supervised learning-based Passive Visible Light Positioning using Solar Irradiation.

.- Multi-teacher Knowledge Distillation via Student’s Reflection.

.- Construction and Application of Protein-Protein Interaction Knowledge Graph.

.- A learning-based monitoring system for factory assembly behavior.

.- A Two-stage Generative Adversarial Approach for Domain Adaptive Semantic Segmentation.

.- LCRNet: Unsupervised Non-Rigid Point Cloud Registration Network Based on Local Correspondence Relationships.

.- Point Cloud Completion via Trigonometric Encoding and Self-attention based Feature Fusion.

.- Research progress of exploring intelligent rehabilitation technology based on human-computer interaction.

.- Spectral Graph Neural Network: A Bibliometrics Study and Visualization Analysis via CiteSpace.

.- H2L: High-Performance Multi-Agent Path Finding in High-Obstacle-Density and Large-Size Maps.

.- Stereo Image Super-resolution Reconstruction Based on Disparity Estimation and Domain Diffusion.

.- Virtual Reality-based Medical Rehabilitation Assistance System.

.- IPSTT: Intention-based Transformer for Multivariate Time Series Forecasting.

.- A Segmentation-based Approach for Lung Disease Classification Using Chest X-ray Images.

.- Dual-Stream Based Scene Text Manipulation Detection Method.

.- ECD: Event-Centric Disentangler for Weakly Supervised Video Anomaly Detection.

.- Sequential Consistency Matters: Boosting Video Sequence Verification with Teacher Multimodal Transformer.

.- A Violent Language Detection Model Based on Short Text.

.- Underground Temperature Prediction Based on LSTM Neural Network and Embedded System Reasoning.

.- PointPET: A Novel Network for 6D Pose Estimation of Industrial Components using Smart Data Driven Modeling.

.- PD-SLAM:A visual SLAM for Dynamic Environments.

.- The Requirements and Constraints of Self-built Data Set on Detection Transformer in Complex Scenario.

.- Self-supervised Contrastive Learning With Similarity-based Sample Judgment.

.- A combined model based on the signal decomposition method, optimization method, and machine learning for wind speed predicting.

.- Improved YOLOv8 Modeling for Earth Observation.

.- Semantic Guided Multi-feature Awared Network for Self-supervised Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.