Lu | Artificial Intelligence and Robotics | Buch | 978-981-962913-8 | sack.de

Buch, Englisch, 345 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 552 g

Reihe: Communications in Computer and Information Science

Lu

Artificial Intelligence and Robotics

9th International Symposium, ISAIR 2024, Guilin, China, September 27-30, 2024, Revised Selected Papers, Part II
Erscheinungsjahr 2025
ISBN: 978-981-962913-8
Verlag: Springer Nature Singapore

9th International Symposium, ISAIR 2024, Guilin, China, September 27-30, 2024, Revised Selected Papers, Part II

Buch, Englisch, 345 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 552 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-962913-8
Verlag: Springer Nature Singapore


This book constitutes the refereed proceedings of the 9th International Symposium Conference on Artificial Intelligence and Robotics, ISAIR 2024, in Guilin, China, in September 27–30, 2024. 

The 61 full papers presented were carefully reviewed and selected from a total of 164 submissions. The ISAIR 2024 focuses on three important areas of pattern recognition: artificial intelligence, robotics and Internet of Things, covering various technical aspects.

Lu Artificial Intelligence and Robotics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- A lane detection method based on fusion of large kernel attentionmechanism.

.- A Study on Enhancing Graph-Based Knowledge Tracing through Question Interaction.

.- Radiology report generation based on multi-scale feature fusion and enhancement.

.- Spatio-Temporal Focus with Active Learning in Sparse Black-Box Adversarial Attacks for Video Recognition.

.- An Improved Point Cloud Registration Algorithm Based on Feature Point Extraction.

.- YOLOv8-FGE: A lightweight mouse behavior detection algorithm.

.- A Dual Encoder U-Net for Multi-Scale 3D Medical Image Segmentation.

.- A Gas Concentration Prediction Model Based on SBLPformer.

.- A MOTRv2-based UAV multi-target tracking model EL-MOTR.

.- Prediction of Typhoon Cloud Maps Based on Self Attention Memory Spatiotemporal Model.

.- Information-theoretic Deep Quantification for Unsupervised Cross-modal Hashing.

.- Research on SwinT-SOLOv2 Modeling for Instance Segmentation.

.- An Overview of Abnormal Data Recovery in Power Systems.

.- An Overview of Full-cycle Data Security For Drone Inspection.

.- A Restoration Method Based on Color Compensation and Depth Prior Using a Revised Underwater Imaging Model.

.- Real-time Student Behavior Analysis via YOLOv5 with Coordinate Attention.

.- GD-RRT*: An Improved RRT* Path Planning Algorithm Combining Gaussian Distributed Sampling and Depth Strategy for fruit-picking robot.

.- UAV Swarm Air Combat Strategies Research based on Multi-Agent Reinforcement Learning and Rule Coupling.

.- Photovoltaic Power Prediction Based on Machine Learning Fusion Algorithm.

.- Multi-modal Spatio-Temporal Transformer for Defect Recognition of Substation Equipment.

.- A Comprehensive Cross-Phase Feature Fusion Method for Multi-phase Liver Tumor Segmentation in Enhanced CT Images.

.- OneStar: Efficient Template-Separable Hierarchical Transformer Tracking for Edge Computing.

.- A multi-view graph neural network approach for magnetic resonance imaging-based diagnosis of knee injuries.

.- Mitigating Multimodal Large Language Model Hallucinations through Direct Preference Optimization.

.- Briefness-Oriented prompting elicits faithfulness in LVLM.

.- A Novel Group Block Attention Module for Lung CT Image Segmentation.

.- Layered Clothing Detection Based on Improved YOLOV9.

.- Strategic Medical Text Classification with Improved Blending Ensemble Learning.

.- HDCP: Hierarchical Dual Cross-modality Prompts Guided RGB-D Fusion for 6D Object Pose Estimation.

.- Dense Images Of Honey Bees.

.- Application of an Improved Residual Attention Neural Network in Mechanical Part Classification.

.- Genetic Algorithm-Optimized Random Forest for Grid Fault Prediction.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.