Buch, Englisch, 500 Seiten, Format (B × H): 158 mm x 238 mm, Gewicht: 1620 g
Buch, Englisch, 500 Seiten, Format (B × H): 158 mm x 238 mm, Gewicht: 1620 g
ISBN: 978-0-8176-4389-8
Verlag: Birkhauser Boston
—Mathematical Reviews (Review of First Edition)
Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural networks and simulation have also been added. There are also new sections on perturbation methods, normal forms, Gröbner bases, and chaos synchronization.
The work provides an introduction to the theory of dynamical systems with the aid of Maple. The author has emphasized breadth of coverage rather than fine detail, and theorems with proof are kept to a minimum. This text is aimed at senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Computeralgebra
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
Weitere Infos & Material
A Tutorial Introduction to Maple.- Differential Equations.- Planar Systems.- Interacting Species.- Limit Cycles.- Hamiltonian Systems, Lyapunov Functions, and Stability.- Bifurcation Theory.- Three-Dimensional Autonomous Systems and Chaos.- Poincar#x00E9; Maps and Nonautonomous Systems in the Plane.- Local and Global Bifurcations.- The Second Part of Hilbert#x2019;s Sixteenth Problem.- Linear Discrete Dynamical Systems.- Nonlinear Discrete Dynamical Systems.- Complex Iterative Maps.- Electromagnetic Waves and Optical Resonators.- Fractals and Multifractals.- Chaos Control and Synchronization.- Neural Networks.- Simulation.- Examination-Type Questions.- Solutions to Exercises.