Buch, Englisch, 441 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 782 g
ICRTC 2024, Volume 1
Buch, Englisch, 441 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 782 g
Reihe: Lecture Notes in Networks and Systems
ISBN: 978-981-97-8945-0
Verlag: Springer Nature Singapore
This book is a collection of high-quality peer-reviewed research papers presented at International Conference on Recent Trends in Computing (ICRTC 2024) organized by SRM Institute of Science and Technology, Ghaziabad, Delhi, India, during July 5–6, 2024. The book is divided into two volumes and discusses a wide variety of industrial, engineering, and scientific applications of the emerging techniques. The book presents original works from researchers from academic and industry in the field of networking, security, big data, and the Internet of Things.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
Weitere Infos & Material
1. Trailblazing Strategy Implementing IoT Powered Machine Learning to Identify Harmful Potatoes.- 2. Safe Spaces Analysis for Mental Health.- 3. Identifying and Managing Concept Drift in Machine Learning through Page Hinkley Test Approaches, Obstacles, and Resolutions.- 4. A Cost Effective Single Stage Recursive Adaptive Filter Setup for Reducing Noise in Phonocardiogram Signals.- 5. Analyzing Gait Angle Variations in Healthy Individuals and Knee Osteoarthritis Patients Utilizing Non-Invasive IMU Sensors.- 6. Enhancing Freight Auditing Efficiency Leveraging Hadoop MapReduce for Logistic Audit Assist.- 7. NDVI Time Series Analysis for Vegetation Monitoring Using Liss III Data.- 8. Ransome ware detection using Machine learning and Deep learning models.