E-Book, Englisch, 346 Seiten
Mahmood Connected Vehicles in the Internet of Things
1. Auflage 2020
ISBN: 978-3-030-36167-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Concepts, Technologies and Frameworks for the IoV
E-Book, Englisch, 346 Seiten
ISBN: 978-3-030-36167-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents an overview of the latest smart transportation systems, IoV connectivity frameworks, issues of security and safety in VANETs, future developments in the IoV, technical solutions to address key challenges, and other related topics. A connected vehicle is a vehicle equipped with Internet access and wireless LAN, which allows the sharing of data through various devices, inside as well as outside the vehicle. The ad-hoc network of such vehicles, often referred to as VANET or the Internet of vehicles (IoV), is an application of IoT technology, and may be regarded as an integration of three types of networks: inter-vehicle, intra-vehicle, and vehicular mobile networks. VANET involves several varieties of vehicle connectivity mechanisms, including vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), vehicle-to-cloud (V2C), and vehicle-to-everything (V2X). According to one survey, it is expected that there will be approximately 380 million connected cars on the roads by 2020. IoV is an important aspect of the new vision for smart transportation. The book is divided into three parts: examining the evolution of IoV (basic concepts, principles, technologies, and architectures), connectivity of vehicles in the IoT (protocols, frameworks, and methodologies), connected vehicle environments and advanced topics in VANETs (security and safety issues, autonomous operations, machine learning, sensor technology, and AI). By providing scientific contributions and workable suggestions from researchers and practitioners in the areas of IoT, IoV, and security, this valuable reference aims to extend the body of existing knowledge.
Professor Zaigham Mahmood is a Technology Consultant at Debesis Education, UK, and a Professor at the Shijiazhuang Tiedao University in Hebei, China. He also holds positions as Foreign Professor at NUST and IIU in Islamabad, Pakistan. He previously served as a Reader (Associate Professor) at the University of Derby, UK, and Professor Extraordinaire at the North-West University, Potchefstroom, South Africa. His many publications include the Springer titles Software Engineering in the Era of Cloud Computing; The Internet of Things in the Industrial Sector; Security, Privacy and Trust in the IoT Environment; Guide to Ambient Intelligence in the IoT Environment; Fog Computing; Smart Cities; Connected Environments for the Internet of Things; Software Project Management for Distributed Computing; Requirements Engineering for Service and Cloud Computing; Connectivity Frameworks for Smart Devices; Data Science and Big Data Computing; Cloud Computing: Challenges, Limitations and R&D Solutions; Continued Rise of the Cloud; Cloud Computing: Methods and Practical Approaches; Software Engineering Frameworks for the Cloud Computing Paradigm; and Cloud Computing for Enterprise Architectures.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;8
1.1;Overview;8
1.2;Objectives;9
1.3;Organization;9
1.4;Target Audiences;10
2;Acknowledgements;12
3;Other Books by Zaigham Mahmood;14
3.1;Software Engineering in the Era of Cloud Computing;14
3.2;The Internet of Things in the Industrial Sector: Security and Device Connectivity, Smart Environments, and Industry 4.0;14
3.3;Security, Privacy and Trust in the IoT Environment;14
3.4;Guide to Ambient Intelligence in the IoT Environment: Principles, Technologies and Applications;15
3.5;Fog Computing: Concepts, Frameworks and Technologies;15
3.6;Smart Cities: Development and Governance Frameworks;15
3.7;Data Science and Big Data Computing: Frameworks and Methodologies;15
3.8;Connected Environments for the Internet of Things: Challenges and Solutions;16
3.9;Connectivity Frameworks for Smart Devices: The Internet of Things from a Distributed Computing Perspective;16
3.10;Cloud Computing: Methods and Practical Approaches;16
3.11;Cloud Computing: Challenges, Limitations and R&D Solutions;16
3.12;Continued Rise of the Cloud: Advances and Trends in Cloud Computing;17
3.13;Software Engineering Frameworks for the Cloud Computing Paradigm;17
3.14;Cloud Computing for Enterprise Architectures;17
3.15;Cloud Computing: Concepts, Technology & Architecture;17
3.16;Software Project Management for Distributed Computing: Life-Cycle Methods for Developing Scalable and Reliable Tools;18
3.17;Requirements Engineering for Service and Cloud Computing;18
3.18;User Centric E-Government: Challenges & Opportunities;18
3.19;Cloud Computing Technologies for Connected Government;18
3.20;Human Factors in Software Development and Design;19
3.21;IT in the Public Sphere: Applications in Administration, Government, Politics, and Planning;19
3.22;Emerging Mobile and Web 2.0 Technologies for Connected E-Government;19
3.23;E-Government Implementation and Practice in Developing Countries;19
3.24;Developing E-Government Projects: Frameworks and Methodologies;20
4;Contents;21
5;About the Editor;23
6;Contributors;23
7;Technologies and Architectures;26
8;1 Connected Vehicles in the IoV: Concepts, Technologies and Architectures;27
8.1;Abstract;27
8.2;1.1 Introduction;27
8.3;1.2 Connected Vehicles: Concepts and Architectures;29
8.3.1;1.2.1 Types of Vehicle (or Car) Connectivity;29
8.3.2;1.2.2 Mobile Ad Hoc Network (MANET);31
8.3.3;1.2.3 Vehicular Ad Hoc Network (VANET);32
8.3.4;1.2.4 Internet of Vehicles (IoV);33
8.3.5;1.2.5 Vehicle-Embedded Software Applications;34
8.4;1.3 Connected Vehicles: Enabling Technologies;35
8.4.1;1.3.1 Internet of Things;35
8.4.2;1.3.2 Cloud Computing;36
8.4.3;1.3.3 AI and Machine Learning;37
8.4.4;1.3.4 5G and DSRC Technologies;37
8.4.5;1.3.5 Other Related Technologies;38
8.5;1.4 Connected Vehicles: Issues and Challenges;38
8.6;1.5 Future Directions;40
8.7;1.6 Conclusions;41
8.8;References;41
9;2 Spatial Intelligence and Vehicle-to-Vehicle Communication: Topologies and Architectures;43
9.1;Abstract;43
9.2;2.1 Introduction;44
9.3;2.2 Background;45
9.4;2.3 Spatial Intelligence;46
9.5;2.4 Managing Data in Vehicular Networks;47
9.6;2.5 Vehicle Communication Models;48
9.6.1;2.5.1 Internet of Vehicles (IoV);48
9.6.2;2.5.2 Vehicle to Vehicle (V2V) Communication;49
9.7;2.6 Node Information Dissemination Behaviour;51
9.8;2.7 Network Topologies and Information Architecture;51
9.9;2.8 Design of Vehicular Communication Models;55
9.10;2.9 Inherent Challenges and Issues;57
9.11;2.10 Future Directions in Vehicular Networks;58
9.12;2.11 Conclusion;59
9.13;References;60
10;3 Seamless V2I Communication in HetNet: State-of-the-Art and Future Research Directions;61
10.1;Abstract;61
10.2;3.1 Introduction;62
10.3;3.2 Radio Access Technologies for V2I Communication;64
10.3.1;3.2.1 Wi-Fi;66
10.3.2;3.2.2 DSRC/IEEE 802.11;66
10.3.3;3.2.3 LTE-A/4G;68
10.3.4;3.2.4 Cellular-V2X (C-V2X);69
10.3.5;3.2.5 5G New Radio (NR);70
10.4;3.3 Handover Process in Radio Access Technologies;70
10.4.1;3.3.1 Handover Process;71
10.4.2;3.3.2 Handover in Wi-Fi;73
10.4.3;3.3.3 Handover in DSRC/IEEE 802.11p;77
10.4.4;3.3.4 Handover in LTE-A/4G;79
10.4.5;3.3.5 Handover in 5G;82
10.5;3.4 Connectivity in HetNet: State-of-the-Art;83
10.5.1;3.4.1 Solutions by 3GPP;84
10.5.2;3.4.2 Solutions by IEEE;89
10.5.3;3.4.3 Other Solutions;94
10.6;3.5 V2I Connectivity: Inherent Challenges;95
10.6.1;3.5.1 Challenges Associated with RATs;96
10.6.2;3.5.2 Challenges Associated with Current HetNet Solutions;98
10.7;3.6 Future Research Directions;99
10.7.1;3.6.1 Multi-path TCP (MPTCP);99
10.7.2;3.6.2 Multi-path IP (MPIP);100
10.7.3;3.6.3 Software-Defined Vehicular HetNet;101
10.7.4;3.6.4 Combination of MIH and ANDSF;102
10.7.5;3.6.5 Combination of ANDSF and Hotspot;102
10.7.6;3.6.6 5G-Enabled Internet-of-Vehicles;103
10.8;3.7 Conclusion;103
10.9;References;104
11;4 Integrating Vehicular Technologies Within the IoT Environment: A Case of Egypt;108
11.1;Abstract;108
11.2;4.1 Introduction;109
11.3;4.2 Vehicular Technologies: State-of-the-Art;111
11.4;4.3 Vehicular Technologies: Architecture, Components, and Limitations;112
11.5;4.4 ITS—An Emerging IoV Application;114
11.6;4.5 Vehicular Clouds;115
11.7;4.6 Possible Solutions;117
11.8;4.7 Opportunities and Challenges for the Future;119
11.9;4.8 Conclusion;120
11.10;References;121
12;5 Protocols and Design Structures for Vehicular Networks;124
12.1;Abstract;124
12.2;5.1 Introduction;125
12.3;5.2 Background;127
12.4;5.3 Communication in Vehicular Networks;128
12.5;5.4 Vehicular Network Principles;131
12.6;5.5 Protocols in Ubiquitous Networks;133
12.7;5.6 Issues and Emerging Themes in VANET;135
12.8;5.7 Proposed MANET Structure;138
12.9;5.8 Future Research;140
12.10;5.9 Conclusion;141
12.11;References;141
13;Frameworks and Methodologies;143
14;6 Intelligent Traffic Management Systems for Next Generation IoV in Smart City Scenario;144
14.1;Abstract;144
14.2;6.1 Introduction;145
14.3;6.2 Conventional Traffic Management Systems and Practices;147
14.3.1;6.2.1 Drawbacks of Conventional Traffic Management Systems;149
14.4;6.3 Intelligent Traffic Management Systems;149
14.4.1;6.3.1 Incident Detection and Emergency Response;150
14.4.2;6.3.2 Intelligent Urban Parking Assistance;151
14.4.3;6.3.3 Route Optimization;152
14.4.4;6.3.4 Vehicle Theft Identification and Detection;152
14.4.5;6.3.5 Automated Toll Management;153
14.5;6.4 Advancements in Intelligent Traffic Management Systems;153
14.5.1;6.4.1 Reinforcement Learning Approach;154
14.5.2;6.4.2 Local Context Awareness;156
14.6;6.5 Challenges and Future Perspective;158
14.6.1;6.5.1 Data Integration;159
14.6.2;6.5.2 Security and Privacy;159
14.6.3;6.5.3 Investment and Operating Costs;160
14.6.4;6.5.4 Sabotage and System Evasion;160
14.7;6.6 Conclusion;161
14.8;References;161
15;7 Smart Transportation Tracking Systems Based on the Internet of Things Vision;163
15.1;Abstract;163
15.2;7.1 Introduction;164
15.3;7.2 Data Collection and Analysis;168
15.4;7.3 Data Analysis and Result;168
15.4.1;7.3.1 Measuring Attributes of Using IoT Smart Sensors in Tracking Systems;168
15.4.2;7.3.2 Commonly Used IoT Sensors in Vehicular Tracking Systems;176
15.4.3;7.3.3 Data Transfer Methods Between Sensors and Actuators;177
15.4.4;7.3.4 Network and Protocols Utilized in Communication Methods;177
15.4.5;7.3.5 Data Storage Approaches;178
15.4.6;7.3.6 Use of Languages and Software Systems for Tracking;179
15.4.7;7.3.7 Algorithms Used in Vehicular Tracking Systems;180
15.5;7.4 Discussion;180
15.6;7.5 Conclusion;183
15.7;Author Contribution and Acknowledgements;184
15.8;References;184
16;8 REView: A Unified Telemetry Platform for Electric Vehicles and Charging Infrastructure;187
16.1;Abstract;187
16.2;8.1 Introduction;188
16.3;8.2 Background;190
16.3.1;8.2.1 Adoption of Electric Vehicles and Charging Stations;190
16.3.2;8.2.2 Measuring the Environmental Impact;191
16.3.3;8.2.3 Telemetry Platforms and Networks;193
16.4;8.3 System Design: Overview;194
16.5;8.4 Charging Infrastructures;195
16.5.1;8.4.1 DC Charging;195
16.5.1.1;8.4.1.1 Communication Protocols;197
16.5.1.2;8.4.1.2 User Authentication;198
16.5.1.3;8.4.1.3 Data Visualization;199
16.5.2;8.4.2 AC Charging;200
16.5.2.1;8.4.2.1 Communication Protocols;201
16.5.2.2;8.4.2.2 Telemetry Parameters;204
16.5.2.3;8.4.2.3 User Authentication;205
16.5.2.4;8.4.2.4 Database;206
16.5.2.5;8.4.2.5 Data Visualization;209
16.6;8.5 Vehicle Monitoring;210
16.6.1;8.5.1 Communication Protocols;211
16.6.2;8.5.2 Database;213
16.6.3;8.5.3 Data Visualization;214
16.6.3.1;8.5.3.1 Vehicle Tracking;214
16.6.3.2;8.5.3.2 Driving Statistics;215
16.6.3.3;8.5.3.3 Heat Maps;217
16.6.3.4;8.5.3.4 Journey Logs;218
16.7;8.6 EV Charging Power Generation;219
16.7.1;8.6.1 Data Visualization;220
16.8;8.7 Usage Billing;221
16.8.1;8.7.1 Itemized Billing;222
16.8.2;8.7.2 Station Operator Billing;223
16.8.3;8.7.3 Network Overview;224
16.9;8.8 Mobile Applications;225
16.10;8.9 Results;225
16.10.1;8.9.1 Overall Energy Usage;227
16.10.2;8.9.2 Usage of Charging Infrastructure;228
16.10.3;8.9.3 Solar PV Monitoring;230
16.10.4;8.9.4 Heat Maps for EV Tracking;231
16.10.5;8.9.5 Charging Infrastructure Usage Forecast;231
16.11;8.10 Conclusion;235
16.12;Acknowledgements;236
16.13;References;236
17;Security and Privacy in the IoT;240
18;9 Security and Privacy Challenges in Vehicular Ad Hoc Networks;241
18.1;Abstract;241
18.2;9.1 Introduction;242
18.3;9.2 VANET Overview;243
18.3.1;9.2.1 VANET Architecture Components;244
18.3.2;9.2.2 VANET Characteristics;246
18.4;9.3 Security and Privacy in Vehicular Networks;247
18.4.1;9.3.1 Need for Security;248
18.4.2;9.3.2 Security and Privacy Requirements;249
18.4.3;9.3.3 Challenges in Implementing Security in VANETs;251
18.4.4;9.3.4 Adversaries and Adversary Models;253
18.5;9.4 Threats and Attacks in Vehicular Networks;255
18.5.1;9.4.1 Attacks on Authenticity and Identification;255
18.5.2;9.4.2 Attacks on Availability;258
18.5.3;9.4.3 Attacks on Confidentiality and Privacy;260
18.5.4;9.4.4 Attacks on Non-repudiation (Accountability);260
18.5.5;9.4.5 Attacks on Integrity and Data Trust;261
18.6;9.5 Mitigation and Countermeasures;261
18.6.1;9.5.1 Intrusion Detection Systems;262
18.6.2;9.5.2 ID-Based Security Systems;263
18.6.3;9.5.3 Public Key/Asymmetric-Based Schemes;263
18.6.4;9.5.4 Symmetric-Based Schemes;264
18.6.5;9.5.5 Secure Routing Protocols;264
18.7;9.6 Conclusion;265
18.8;References;266
19;10 Security Issues in Vehicular Ad Hoc Networks for Evolution Towards Internet of Vehicles;270
19.1;Abstract;270
19.2;10.1 Introduction;271
19.3;10.2 Related Work;273
19.4;10.3 Existing Schemes;277
19.5;10.4 LIAT;278
19.5.1;10.4.1 Network and System Assumptions;279
19.5.2;10.4.2 Root-BS Registration Phase;280
19.5.3;10.4.3 BS-Vehicle Registration Phase;282
19.5.4;10.4.4 Authentication Phase;283
19.5.5;10.4.5 Algorithmic Complexity;285
19.5.5.1;10.4.5.1 Algorithmic Complexity of Root-BS Registration Phase;285
19.5.5.2;10.4.5.2 Algorithmic Complexity of BS-Vehicle Registration Phase;286
19.5.5.3;10.4.5.3 Algorithmic Complexity of Authentication Phase;286
19.6;10.5 LoWVR;290
19.6.1;10.5.1 Network Description;291
19.6.2;10.5.2 Algorithms;291
19.6.3;10.5.3 Correctness Proof of Basic Properties;296
19.7;10.6 Performance Analysis of LIAT;297
19.7.1;10.6.1 Qualitative Performance;297
19.7.1.1;10.6.1.1 Security Analysis;297
19.7.1.2;10.6.1.2 Overhead Analysis;300
19.7.2;10.6.2 Quantitative Performance;302
19.7.2.1;10.6.2.1 Simulation Metrics;302
19.7.2.2;10.6.2.2 Simulation Results;306
19.8;10.7 Performance Analysis of LoWVR;312
19.8.1;10.7.1 Qualitative Performance;312
19.8.1.1;10.7.1.1 Security Analysis;312
19.8.1.2;10.7.1.2 Overhead Analysis;314
19.8.2;10.7.2 Quantitative Performance;316
19.8.2.1;10.7.2.1 Simulation Metrics;318
19.8.2.2;10.7.2.2 Simulation Results;318
19.9;10.8 Conclusion;322
19.10;References;323
20;11 Cloud-Based Secured VANET with Advanced Resource Management and IoV Applications;325
20.1;Abstract;325
20.2;11.1 Introduction;325
20.3;11.2 Cloud-based VANET Architecture;327
20.4;11.3 VANET Resource Management System;331
20.5;11.4 IoV Applications of Cloud-based VANET;334
20.6;11.5 VANET Communication Modes;336
20.7;11.6 Proposed Distributive Security Algorithm for VANET Communication Modes;336
20.8;11.7 Conclusion;339
20.9;References;340
21;Index;342




