Mammen | When Does Bootstrap Work? | Buch | 978-0-387-97867-3 | sack.de

Buch, Englisch, Band 77, 201 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Statistics

Mammen

When Does Bootstrap Work?

Asymptotic Results and Simulations
Softcover Nachdruck of the original 1. Auflage 1992
ISBN: 978-0-387-97867-3
Verlag: Springer

Asymptotic Results and Simulations

Buch, Englisch, Band 77, 201 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Statistics

ISBN: 978-0-387-97867-3
Verlag: Springer


In these notes some results are presented for the asymptotic behavior of the bootstrap procedure. Bootstrap is a procedure for estimating (approximating) the distribution of a statistic. It is based on resampling and simulations. It was been introduced in Efron (1979) and in the last decade it has been discussed for a wide variety of statistical problems. Introductory are the articles Efron and Gong (1983) and Efron and Tibshirani (1986) and the book Helmers (1991b). Many applications of bootstrap are discussed in Efron (1982). Survey articles are Beran (1984b), Hinkley (1988), and Diciccio and Romano (1988a). For many classical decision problems (testing and estimation problems, prediction, construction of confidence regions) bootstrap has been compared with classical approximations based on mathematical limit theorems and expansions (for instance normal approximations, empirical Edgeworth expansions) (see for instance Bretagnolle (1983) and Beran (1982, 1984a, 1987, 1988), Abramovitch and Singh (1985), and Hall (1986a, 1988) ). An asymptotic treatment of bootstrap is contained in the book Beran and Ducharme (1991). A detailed analysis of bootstrap based on higher­ order Edgeworth expansions has been carried out in the book Hall (1992). Recent publications on bootstrap can also be found in the conference volumes LePage and Billard (1992) and Joeckel, Rothe, and Sendler (1992). We will consider the application of bootstrap in three contexts: estimation of smooth functionals, nonparametric curve estimation, and linear models. We do not attempt a complete description of bootstrap in these areas.

Mammen When Does Bootstrap Work? jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


0. Introduction.- 1. Bootstrap and Asymptotic Normality.- 1. Introduction.- 2. Bootstrapping linear functionals. The i.i.d. case.- 3. Bootstrapping smooth functionals.- 4. Bootstrap and wild bootstrap in non i.i.d. models.- 5. Some simulations.- 6. Proofs.- Figures.- 2. An Example Where Bootstrap Fails: Comparing Nonparametric Versus Parametric Regression Fits.- 1. A goodness-of-fit test.- 2. How to bootstrap. Bootstrap and wild bootstrap.- 3. Proofs.- 3. A Bootstrap Success Story: Using Nonparametric Density Estimates in K-Sample Problems.- 1. Bootstrap tests.- 2. Bootstrap confidence regions.- 3. Proofs.- 4. A Bootstrap Test on the Number of Modes of a Density.- 1. Introduction.- 2. The number of modes of a kernel density estimator.- 3. Bootstrapping the test statistic.- 4. Proofs.- Figures.- 5. Higher-Order Accuracy of Bootstrap for Smooth Functionals.- 1. Introduction.- 2. Bootstrapping smooth functionals.- 3. Some more simulations. Bootstrapping an M-estimate.- 4. Proof of the theorem.- Figures.- 6. Bootstrapping Linear Models.- 1. Bootstrapping the least squares estimator.- 2. Bootstrapping F-tests.- 3. Proof of Theorem 3.- 7. Bootstrapping Robust Regression.- 1. Introduction.- 2. Bootstrapping M-estimates.- 3. Stochastic expansions of M-estimates.- 4. Proofs.- Figures.- 8. Bootstrap and wild Bootstrap for High-Dimensional Linear Random Design Models.- 1. Introduction.- 2. Consistency of bootstrap for linear contrasts.- 3. Accuracy of the bootstrap.- 4. Bootstrapping F-tests.- 5. Proofs.- Tables.- Figures.- 9. References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.