Buch, Englisch, Band 61, 770 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g
Reihe: Lecture Notes in Computational Science and Engineering
Buch, Englisch, Band 61, 770 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1165 g
Reihe: Lecture Notes in Computational Science and Engineering
ISBN: 978-3-540-77205-7
Verlag: Springer Berlin Heidelberg
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
Decomposition Frameworks.- Schwarz Iterative Algorithms.- Schur Complement and Iterative Substructuring Algorithms.- Lagrange Multiplier Based Substructuring: FETI Method.- Computational Issues and Parallelization.- Least Squares-Control Theory: Iterative Algorithms.- Multilevel and Local Grid Refinement Methods.- Non-Self Adjoint Elliptic Equations: Iterative Methods.- Parabolic Equations.- Saddle Point Problems.- Non-Matching Grid Discretizations.- Heterogeneous Domain Decomposition Methods.- Fictitious Domain and Domain Imbedding Methods.- Variational Inequalities and Obstacle Problems.- Maximum Norm Theory.- Eigenvalue Problems.- Optimization Problems.- Helmholtz Scattering Problem.




