Buch, Englisch, 136 Seiten, Format (B × H): 235 mm x 156 mm, Gewicht: 228 g
Reihe: Chapman & Hall/Distributed Computing and Intelligent Data Analytics Series
Management and Analysis
Buch, Englisch, 136 Seiten, Format (B × H): 235 mm x 156 mm, Gewicht: 228 g
Reihe: Chapman & Hall/Distributed Computing and Intelligent Data Analytics Series
ISBN: 978-1-032-46138-0
Verlag: Taylor & Francis Ltd
Artificial Intelligence and Deep Learning for Computer Network: Management and Analysis aims to systematically collect quality research spanning AI, ML, and deep learning (DL) applications to diverse sub-topics of computer networks, communications, and security, under a single cover. It also aspires to provide more insights on the applicability of the theoretical similitudes, otherwise a rarity in many such books.
Features:
- A diverse collection of important and cutting-edge topics covered in a single volume
- Several chapters on cybersecurity, an extremely active research area
- Recent research results from leading researchers and some pointers to future advancements in methodology
- Detailed experimental results obtained from standard data sets
This book serves as a valuable reference book for students, researchers, and practitioners who wish to study and get acquainted with the application of cutting-edge AI, ML, and DL techniques to network management and cyber security.
Zielgruppe
Academic, Postgraduate, Professional, and Undergraduate Advanced
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Drahtlostechnologie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
Weitere Infos & Material
1. Deep Learning in traffic management: Deep traffic analysis of secure DNS. 2. Machine Learning based Approach for Detecting Beacon Forgeries in Wi-Fi Networks. 3. Reinforcement learning-based approach towards switch migration for load balancing in SDN. 4. Green Corridor over a Narrow Lane: Supporting High Priority Message Delivery through NB-IoT. 5. Vulnerabilities Detection in Cyber Security using Deep Learning based Information Security and Event Management. 6. Detection and Localization of Double Compressed Forged Regions in JPEG Images using DCT Coefficients and Deep Learning based CNN.