McKee / Smyth | Number Theory and Polynomials | Buch | 978-0-521-71467-9 | sack.de

Buch, Englisch, Band 352, 360 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 527 g

Reihe: London Mathematical Society Lecture Note Series

McKee / Smyth

Number Theory and Polynomials


Erscheinungsjahr 2008
ISBN: 978-0-521-71467-9
Verlag: Cambridge University Press

Buch, Englisch, Band 352, 360 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 527 g

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-0-521-71467-9
Verlag: Cambridge University Press


Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book's contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman's inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.

McKee / Smyth Number Theory and Polynomials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Index of authors; List of participants; Conference photograph, with key; The trace problem for totally positive algebraic integers Julián Aguirre and Juan Carlos Peral, with an appendix by Jean-Pierre Serre; Mahler's measure: from Number Theory to Geometry Marie José Bertin; Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps Frits Beukers and Hans Montanus; The merit factor problem Peter Borwein, Ron Ferguson and Joshua Knauer; Barker sequences and flat polynomials Peter Borwein and Michael Mossinghoff; The Hansen-Mullen primitivity conjecture: completion of proof Stephen Cohen and Mateja Prešern; An inequality for the multiplicity of the roots of a polynomial Arturas Dubickas; Newman's inequality for increasing exponential sums Tamás Erdélyi; On primitive divisors of n2 + b Graham Everest and Glyn Harman; Irreducibility and greatest common divisor algorithms for sparse polynomials Michael Filaseta, Andrew Granville and Andrzej Schinzel; Consequences of the continuity of the monic integer transfinite diameter Jan Hilmar; Nonlinear recurrence sequences and Laurent polynomials Andrew Hone; Conjugate algebraic numbers on conics: a survey James McKee; On polynomial ergodic averages and square functions Radhakrishnan Nair; Polynomial inequalities, Mahler's measure, and multipliers Igor E. Pritsker; Integer transfinite diameter and computation of polynomials Georges Rhin and Qiang Wu; Smooth divisors of polynomials Eira Scourfield; Self-inversive polynomials with all zeros on the unit circle Christopher Sinclair and Jeffrey Vaaler; The Mahler measure of algebraic numbers: a survey Chris Smyth.


Smyth, Chris
Chris Smyth is a Reader in the School of Mathematics and the Maxwell Institute for Mathematical Sciences at the University of Edinburgh.

Mckee, James
James McKee is a Senior Lecturer in the Department of Mathematics at Royal Holloway, University of London.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.