Mecerreyes Applications of Ionic Liquids in Polymer Science and Technology
2015
ISBN: 978-3-662-44903-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 392 Seiten, eBook
ISBN: 978-3-662-44903-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;About the Editor;8
3;Contributors;10
4;1 Ionic Liquids as Polymer Additives;13
4.1;Introduction;14
4.2;Polymer Electrolytes;15
4.3;Lubricants;16
4.4;Plasticizers;17
4.5;Porous Polymers and Foams;19
4.6;Organic Polymers Supporting ILs;20
4.7;Supramolecular Polymers;20
4.8;Surfactant Agents;21
4.8.1;Ionic Liquids: Surfactant Agents of Layered Silicates;21
4.8.2;IL-Treated Layered Silicates for Polymer Nanocomposites;23
4.8.2.1;Polyolefin/MMT-IL Nanocomposites;24
4.8.2.2;PVDF/MMT-IL Nanocomposites;24
4.8.2.3;Polystyrene/MMT-IL Nanocomposites;25
4.9;Conclusions;26
4.10;References;26
5;2 Deep Eutectic Solvents Playing Multiple Roles in the Synthesis of Porous Carbon Materials;34
5.1;Introduction;14
5.2;Use of DESs in the Synthesis of Porous Carbon Materials;15
5.3;Application of Porous Carbon Materials;16
5.3.1;As Electrodes in Supercapacitors;17
5.3.2;As CO2 Adsorbents;19
5.4;Conclusions;20
5.5;References;26
6;3 Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes;57
6.1;Introduction;14
6.2;Chemistry of Poly(Ionic Liquid)s;15
6.2.1;Chemical Structure of Ionic Liquid Monomers;16
6.2.2;Polymerizations of IL Monomers;17
6.2.2.1;Straightforward Polymerization of IL Monomers;19
6.2.2.1.1;Conventional Free Radical Polymerization;20
6.2.2.1.2;Controlled/Living Radical Polymerization;20
6.2.2.1.3;Other Polymerizations;21
6.2.3;PILs by Polymer Modifications;21
6.3;Versatile Applications in Materials Science;23
6.3.1;Solid Ion Conductors;24
6.3.2;Dispersants;24
6.3.3;Sorbents and Separation;25
6.3.4;Carbon Materials;26
6.3.5;Catalysis;70
6.3.6;Other Applications;72
6.4;Conclusion;72
6.5;Acknowledgments;72
6.6;References;26
7;4 Imidazolium-Based Poly(Ionic Liquid) Block Copolymers;78
7.1;Introduction;14
7.2;Synthetic Developments to PIL BCPs;15
7.2.1;Reversible Addition Fragmentation Chain Transfer (RAFT);16
7.2.2;Atom Transfer Radical Polymerization (ATRP);17
7.2.3;Nitroxide-Mediated Polymerization (NMP);19
7.2.4;Cobalt-Mediated Radical Polymerization (CMRP);20
7.2.5;Ring-Opening Metathesis Polymerization (ROMP);20
7.2.6;Chemical Modification of Preformed Block Copolymers;21
7.3;Self-assembly in Solution;21
7.4;Self-assembly at the Solid State and Related Transport Properties;23
7.5;Potential Applications of PIL BCPs;24
7.5.1;Energy Conversion Devices;24
7.5.2;PIL BCPs for Gas Separation;25
7.5.3;As Precursors for Nanostructured Carbon;26
7.6;Conclusion;70
7.7;Acknowledgments;72
7.8;References;26
8;5 Ionic Liquids and Polymeric Ionic Liquids as Stimuli-Responsive Functional Materials;112
8.1;Introduction;14
8.2;Association Structures;15
8.3;Anion Recognition and Sensing;16
8.4;Gels;17
8.5;Other Applications;19
8.6;Outlook;20
8.7;References;26
9;6 Ionic Liquid and Cellulose Technologies: Dissolution, Modification and Composite Preparation;144
9.1;Cellulose and Conventional Processing Technologies;14
9.2;Ionic Liquids and Cellulose Dissolution;15
9.2.1;Cellulose Dissolution in Ionic Liquids;16
9.2.2;Dissolution of Other Polysaccharides in Ionic Liquids;17
9.3;Chemical Modification of Cellulose in Ionic Liquids;19
9.4;Cellulose Composites;20
9.4.1;Polymerized Ionic Liquid-Cellulose Composites;20
9.4.2;Cellulose Based Ion Gels;21
9.5;Cellulosic Electrospun Fibers from Ionic Liquids;21
9.6;Outlook;23
9.7;References;26
10;7 Ionic Liquids and Polymeric Ionic Liquids in Analytical Environmental Applications;162
10.1;Introduction;14
10.2;Application of ILs and PILs in Microextraction Techniques for Environmental Analysis;15
10.2.1;Single-Drop Microextraction (SDME);16
10.2.1.1;Extraction of Volatile Organic Compounds (VOCs);17
10.2.1.2;Extraction of Chlorobenzenes;19
10.2.1.3;Extraction of Amines and Sulfonamides;20
10.2.1.4;Extraction of Phenols;20
10.2.1.5;Extraction of Polycyclic Aromatic Hydrocarbons (PAHs);21
10.2.1.6;Extraction of Metal Ions and Organometallic Compounds;21
10.2.1.7;Extraction of Other Types of Analytes;23
10.2.2;Hollow Fiber Membrane Liquid-Phase Microextraction (HF-LPME);24
10.2.3;Dispersive Liquid-Liquid Microextraction (DLLME);24
10.2.3.1;Extraction of Pesticides;25
10.2.3.2;Extraction of Aromatic Compounds;26
10.2.3.3;Extraction of Pharmaceutical Compounds;70
10.2.3.4;Extraction of Metal Ions;72
10.2.3.5;Extraction of Other Types of Analytes;72
10.2.4;Solid-Phase Microextraction (SPME);185
10.2.4.1;Extraction of VOCs;190
10.2.4.2;Extraction of Pesticides;191
10.2.4.3;Extraction of PAHs and Other Aromatic Compounds;192
10.2.4.4;Extraction of Other Types of Analytes;194
10.3;IL- and PIL-Based GC Stationary Phases Designed for Environmental Analysis;195
10.3.1;Application of IL/PIL-Based GC Stationary Phases in Single-Dimensional GC;195
10.3.1.1;Application of Homemade IL/PIL-Based GC Stationary Phases in Environmental Analysis;196
10.3.1.2;Application of Commercial IL Stationary Phases in Environmental Analysis;196
10.3.2;Application of IL/PIL-Based GC Stationary Phases for Two-Dimensional GC;197
10.3.2.1;Application of the IL/PIL-Based 2D GC Stationary Phases in Environmental Analysis;197
10.4;Conclusions;199
10.5;References;26
11;8 Ionic Liquids and Polymers in Energy;208
11.1;Introduction;14
11.2;Ionic Liquids as Electrolytes in Energy Storage and Production;15
11.2.1;Li-Ion Batteries;16
11.2.2;Supercapacitors;17
11.2.3;Actuators;19
11.2.4;Fuel Cells;20
11.2.5;Dye-Sensitized Solar Cells (DSSCs);20
11.3;Ionic Liquid-Based Polymer Electrolytes;21
11.3.1;Preparation Methods;21
11.3.2;Families of Matrix Polymers;23
11.4;Application of IL-Polymer Electrolytes in Energy Storage;24
11.4.1;Li-ion Batteries;24
11.4.2;Lithium/Sulfur Batteries;25
11.4.3;Lithium/Air Batteries;26
11.4.4;Supercapacitors;70
11.4.5;Actuators;72
11.5;Application of IL-Polymer Electrolytes in Energy Production;72
11.5.1;Proton Exchange Membrane Fuel Cells (PEMFCs);185
11.5.2;Alkaline Polymer Electrolyte Fuel Cells (APEMFCs);190
11.5.3;Dye-Sensitized Solar Cells;191
11.6;Summary;192
11.7;References;26
12;9 Polymeric Imidazoles and Imidazoliums in Nanomedicine: Comparison to Ammoniums and Phosphoniums;239
12.1;Introduction;14
12.2;Ammonium- and Phosphonium-Containing Macromolecules;15
12.2.1;Structural Differences of Ammonium and Phosphonium Cations;16
12.2.1.1;Thermal Stability and Base Stability;17
12.2.1.2;Antimicrobials;19
12.2.1.3;Nonviral Nucleic Acid Delivery;20
12.3;Macromolecules from Vinyl Imidazole Monomers;20
12.3.1;Macromolecules from 1-Vinylimidazole;21
12.3.1.1;Application in Metal Chelation;21
12.3.1.2;Synthetic Enzymes;23
12.3.1.3;Biological Applications of 1-Vinylimidazole-Containing Macromolecules;24
12.3.1.4;Controlled Radical Polymerization;24
12.3.2;Macromolecules Containing 4-Vinylimidazole;25
12.3.3;Macromolecules Containing 2-Vinylimidazole;26
12.3.4;Other Cations;70
12.4;Conclusions;72
12.5;Acknowledgments;72
12.6;References;26
13;10 Poly(ionic liquid)s: Designing CO2 Separation Membranes;275
13.1;Motivation;14
13.2;Contextualization;15
13.3;Membrane Gas Separation;16
13.3.1;Permeability, Diffusivity, and Solubility;17
13.3.2;Selectivity;19
13.3.3;Separation Performance;20
13.4;CO2 Separation Membranes Based on Poly(ionic liquid)s;20
13.4.1;Neat PIL Membranes;21
13.4.2;PIL/IL Composite Membranes;21
13.4.3;PIL Copolymer Membranes;23
13.4.4;PIL/IL/Zeolite Mixed Matrix Membranes;24
13.5;Outlook;24
13.6;Acknowledgments;72
13.7;References;26
14;11 Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices;304
14.1;Introduction;14
14.2;Synthesis of Interpenetrating Networks as Solid Polymer Electrolyte;15
14.2.1;Introduction;16
14.2.2;PEO/Polybutadiene IPNs as SPE;17
14.2.3;PEO/NBR IPNs as SPE;19
14.2.4;Other IPNs as SPE;20
14.2.5;Conclusion;20
14.3;Synthesis of Conducting IPNs to Electroactive Materials;21
14.3.1;The Chemical Synthesis Route;21
14.3.2;The Electrochemical Synthesis Route;23
14.4;PEDOT-Based IPNs with Electrochromic or Electroreflective Properties;24
14.4.1;Introduction;24
14.4.2;C-IPN-Based Electrochromic Devices;25
14.4.3;Electroreflective Device Based on C-IPN;26
14.5;Actuator Devices;70
14.5.1;Actuation Mechanism;72
14.5.2;Robust C-IPN Actuator Devices;72
14.5.3;High-Speed C-IPN Actuators;185
14.5.4;C-IPN-Based Microactuator;190
14.6;Conclusion;191
14.7;References;26
15;12 Chapter Poly(Ionic Liquid)s and Nanoobjects;329
15.1;Introduction;14
15.2;Use of PILs in Nanotechnology;15
15.2.1;PILs and Nanoobjects;16
15.2.2;Carbonaceous Nanoobjects;17
15.2.2.1;Carbon Nanotubes (CNTs);19
15.2.2.1.1;Dispersants;20
15.2.2.1.2;Conductive Polymers;20
15.2.2.1.3;Biosensors;21
15.2.2.1.4;Lubricants;21
15.2.2.1.5;Membrane Actuators;23
15.2.2.2;Graphene;24
15.2.2.2.1;Dispersants;24
15.2.2.2.2;Conductive Polymers;25
15.2.2.2.3;Biosensors;26
15.2.2.2.4;Electrodes;70
15.2.2.2.5;Stimuli Responsive Materials;72
15.2.3;Metal and Metal-oxide Nanoobjects;72
15.2.3.1;Coatings;185
15.2.3.2;Catalysis;190
15.2.3.3;Stimuli Responsive Materials;191
15.2.3.4;Dye-sensitized Solar Cells;192
15.2.3.5;Template;194
15.2.3.6;Miscellaneous;195
15.2.4;Mixtures of Carbonaceous and Metallic Nanoobjects;195
15.2.4.1;Catalysis;196
15.2.4.2;Biosensors;196
15.2.4.3;Lithium Ion Batteries;197
15.3;Conclusions and Future Prospects;197
15.4;References;26
16;13 Ionic Liquids as Solvents and/or Catalysts in Polymerization;360
16.1;Introduction;14
16.2;Radical Polymerization in ILs;15
16.3;Ionic Polymerization in ILs;16
16.3.1;Cationic Polymerization in ILs;17
16.3.2;Anionic Polymerization in ILs;19
16.3.3;Transition-Metal-Catalyzed Polymerization in ILs;20
16.4;Polycondensation in ILs;20
16.5;Enzymatic Polymerization in ILs;21
16.6;Ionic Liquids as Catalysts for Polymerization;21
16.7;Conclusion;23
16.8;References;26
Introduction Ionic Liquids and Polymers: Versatile Combination of Materials.- Poly(ionic Liquids).- Structurally controlled Polymeric Ionic Liquids and related Block Copolymers.- Ionic Liquids and Polymers as Stimuli Responsive Materials.- Ionic Liquids and Polymers in analytical environmental applications.- Ionic Liquids and Polymers in energy.- Ionic Liquids and Polymers in Nanomedicine.- Ionic Liquids and Polymers in Gas Separation.- Ionic Liquids as Polymer Additives.