Medved / Domjan / Arkar | Sustainable Technologies for Nearly Zero Energy Buildings | E-Book | www.sack.de
E-Book

E-Book, Englisch, 398 Seiten

Reihe: Springer Tracts in Civil Engineering

Medved / Domjan / Arkar Sustainable Technologies for Nearly Zero Energy Buildings

Design and Evaluation Methods
1. Auflage 2019
ISBN: 978-3-030-02822-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Design and Evaluation Methods

E-Book, Englisch, 398 Seiten

Reihe: Springer Tracts in Civil Engineering

ISBN: 978-3-030-02822-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents cutting-edge work on the energy efficiency and environmental sustainability of buildings, examining EU policies, regulations and technologies for complex systems such as passive buildings, sustainable buildings and, as part of the Energy Performance of Building Directive (EPBD), nearly Zero Energy Buildings (nZEB) requirements. It explores a wide range of topics, including indoor environment requirements, building physics, in-situ experiments to determine the thermal properties of buildings, nZEB requirements, building service technology, and methods of evaluating energy efficiency and environmental impacts. It also provides an overview of the best available technologies for nZEB, including those for the rational use of energy, utilization of renewable energy sources, EPBD systems and calculation methods. This book is a valuable resource for students, researchers and practitioners of urban planning, and architecture, civil and mechanical engineering.

Sašo Medved is full professor and head of the Laboratory for Sustainable Technologies in Buildings at the University of Ljubljana, Slovenia. His research focuses on transformation of renewable energy sources, environmental engineering, building physics, the heat and mass transfer in urban environments, mitigating climate change.

Medved / Domjan / Arkar Sustainable Technologies for Nearly Zero Energy Buildings jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Authors;15
4;1 Indoor Comfort Requirements;16
4.1;Abstract;16
4.2;1.1 Indoor Thermal Comfort;17
4.2.1;1.1.1 Criteria for Indoor Environment Thermal Comfort Global Parameters;20
4.2.2;1.1.2 Integral Indicators of Indoor Thermal Comfort: PMV and PPD;26
4.2.3;1.1.3 Adaptive Model of Thermal Comfort;28
4.2.4;1.1.4 Local Indoor Thermal Comfort Indicators;29
4.3;1.2 Indoor Air Quality (IAQ);30
4.3.1;1.2.1 Required Ventilation for IAQ;30
4.4;1.3 Visual Comfort;35
4.4.1;1.3.1 Criteria of Visual Comfort Parameters;36
4.5;1.4 Acoustic Comfort;39
4.5.1;1.4.1 Sound Recognition and Noise Protection;40
4.6;References;42
5;2 Energy Sources;43
5.1;Abstract;43
5.2;2.1 Renewable Energy Sources (RES);45
5.2.1;2.1.1 Solar Energy;47
5.2.2;2.1.2 Geothermal Energy;51
5.2.3;2.1.3 Tidal Energy;53
5.3;2.2 Fuels as Energy Carriers;54
5.3.1;2.2.1 Non-renewable Fossil Fuels;57
5.3.1.1;2.2.1.1 Natural Gas;57
5.3.1.2;2.2.1.2 Liquefied Petroleum Gas;58
5.3.1.3;2.2.1.3 Lightweight Heating Oil;59
5.3.2;2.2.2 Renewable Fuels Made from Biomass;60
5.3.2.1;2.2.2.1 Solid Biomass Fuels;62
5.3.2.2;2.2.2.2 Liquid Biomass Fuels;63
5.3.2.3;2.2.2.3 Gaseous Biomass Fuels;64
5.4;2.3 Electricity;65
5.5;References;71
6;3 Introduction to Building Physics;73
6.1;Abstract;73
6.2;3.1 Heat Transfer in Building Structures;73
6.2.1;3.1.1 Thermal Transmittance of Building Structures (U-Value);74
6.2.2;3.1.2 Thermal Transmittance of Homogeneous Structures;75
6.2.3;3.1.3 Thermal Transmittance of Structures with Closed Air Gap or Ventilated Air Layer;77
6.2.4;3.1.4 Thermal Transmittance of Green Building Structures;78
6.2.5;3.1.5 Thermal Transmittance of Building Structures in Contact with the Ground;80
6.2.6;3.1.6 Thermal Transmittance of Windows (and Doors);81
6.2.7;3.1.7 Thermal Bridges;83
6.2.8;3.1.8 Specific Transmission Heat Transfer Coefficient (Average Thermal Transmittance of Building Envelope);88
6.2.9;3.1.9 Total Solar Energy Transmittance of Windows (and Transparent Envelope Structures);89
6.2.10;3.1.10 Heat Accumulation in Building Structures;90
6.3;3.2 Psychrometrics;95
6.4;References;97
7;4 Experimental Evaluation of Buildings’ Envelope Thermal Properties;98
7.1;Abstract;98
7.2;4.1 Semi-professional Tools and Applications for Evaluation of Indoor Comfort;98
7.3;4.2 In-Situ Determination of Heat Transfer Coefficient U of Building Structures;100
7.4;4.3 In-Situ Determination of Glazing Total Solar Energy Transmittance g;105
7.5;4.4 In-Situ Determination of the Building Envelope Thermal Insulation with Thermography;106
7.6;4.5 In-Situ Determination of Building Airtightness;109
7.7;4.6 In-Situ Determination of Overall Building Thermal Properties;112
7.8;Reference;116
8;5 Global Climate and Energy Performance of the Building;117
8.1;Abstract;117
8.2;5.1 Energy Performance of Building Directive (EPBD) and Nearly Zero Energy Buildings (NZEB);119
8.3;5.2 Determination of Energy Performance of the Buildings;121
8.3.1;5.2.1 Time Step Intervals and Calculation Period;123
8.4;5.3 Determination of Building Energy Needs;124
8.4.1;5.3.1 Energy Need for Heating QNH;124
8.4.2;5.3.2 Energy Need for Cooling QNC: Monthly Calculation Period;128
8.4.3;5.3.3 Energy Need for Heating QNH and Cooling QHC: Hourly Calculation Method;130
8.4.4;5.3.4 Energy Need for Ventilation QV;133
8.4.5;5.3.5 Energy Need for Domestic Hot Water QW;133
8.4.6;5.3.6 Energy Need for Humidification QHU and Dehumidification QDHU of Indoor Air;134
8.4.7;5.3.7 Energy Need for Lighting QL;135
8.5;5.4 Delivered Energy for the Building Operation Qf;136
8.6;5.5 Primary Energy Needed for the Building Operation;139
8.7;References;141
9;6 Best Available Technologies (BAT) for On-Site and Near-by Generation of Heat for NZEB;142
9.1;Abstract;142
9.2;6.1 Local or Decentralized Heat Generators for Residential Buildings;143
9.2.1;6.1.1 Biomass Stoves and Furnaces;143
9.2.2;6.1.2 Electrical Heaters;146
9.3;6.2 Heat Generators for Central Heating Systems;147
9.3.1;6.2.1 Combustion Boilers;147
9.3.1.1;6.2.1.1 Thermal Efficiency of Combustion Boilers;149
9.3.1.2;6.2.1.2 Environmental Impacts of Combustion Boilers;153
9.3.2;6.2.2 Heat Pumps;154
9.3.2.1;6.2.2.1 Energy Sources for Heat Pumps;157
9.3.2.2;6.2.2.2 Efficiency and Design of HP;160
9.3.2.3;6.2.2.3 Environmental Impacts of HP;162
9.4;6.3 Solar Thermal Collectors;163
9.4.1;6.3.1 Thermal Efficiency of Solar Thermal Collectors;165
9.4.2;6.3.2 Production of Heat: Rule of Thumb;168
9.5;6.4 District Heating;169
9.6;6.5 Other Heat Generators;170
9.7;References;171
10;7 Best Available Technologies (BAT) for On-Site Electricity Generation for nZEB;172
10.1;Abstract;172
10.2;7.1 Photovoltaic (PV) Systems;173
10.2.1;7.1.1 Types of PV Cells;176
10.2.1.1;7.1.1.1 PV Cell Efficiency;177
10.2.2;7.1.2 PV Modules;180
10.2.2.1;7.1.2.1 Efficiency of PV Module;181
10.2.3;7.1.3 Building Integrated PV Modules;182
10.2.4;7.1.4 PV Systems;184
10.2.5;7.1.5 Production of Electricity: Rule of Thumb;185
10.2.6;7.1.6 Environmental Impacts of PV Cells;186
10.3;7.2 Small Scale Cogeneration;186
10.3.1;7.2.1 Cost Effectiveness;189
10.3.2;7.2.2 Environmental Benefits of mCHP;190
10.4;7.3 Wind Turbines;190
10.4.1;7.3.1 Wind Energy Potential;191
10.4.2;7.3.2 Rated Power and Efficiency of Wind Turbines;193
10.4.3;7.3.3 Types of Wind Turbines;195
10.4.3.1;7.3.3.1 Building-Integrated Wind Turbines;196
10.4.4;7.3.4 Production of Electricity: Rule of Thumb;197
10.4.5;7.3.5 Environmental Impacts;197
10.5;7.4 Fuel Cells (FC);198
10.5.1;7.4.1 Types of Fuel Cells;199
10.6;References;200
11;8 Space Heating of nZEB;201
11.1;Abstract;201
11.2;8.1 Heat Load of the Building;201
11.2.1;8.1.1 Rule of Thumb;203
11.2.2;8.1.2 Steady State Heat Load;203
11.2.3;8.1.3 Heat Load Determination by Dynamic Simulations;206
11.3;8.2 Central Space Heating Systems;208
11.3.1;8.2.1 Comparative Advantages and Disadvantages of Hydronic and Hot Air Space Heating Systems;208
11.3.1.1;8.2.1.1 Relation Between Flow Rate and Temperature of Heat Transfer Fluid;208
11.3.2;8.2.2 Sub-systems of Space Heating System;211
11.3.3;8.2.3 Basic Elements of Space Heating System;213
11.4;8.3 Heat Storage;213
11.5;8.4 Distribution Systems;216
11.5.1;8.4.1 Hydronic Systems;217
11.6;8.5 End Heat Exchangers/Heat Emitters;220
11.6.1;8.5.1 Radiators;220
11.6.2;8.5.2 Convectors and Fan-Coils;222
11.6.3;8.5.3 Active Beams;224
11.6.4;8.5.4 Floor and Ceiling Radiant Heat Emitters;225
11.6.5;8.5.5 Thermally Activated Building Structures;228
11.6.6;8.5.6 Other Applications of Floor Heating;229
11.7;8.6 Control of Space Heating Systems;230
11.8;8.7 Energy Needs and Delivered Energy for Space Heating;233
11.9;8.8 Principles of Rational Use of Energy for Space Heating;238
11.10;References;240
12;9 Space Cooling of nZEB;241
12.1;Abstract;241
12.2;9.1 Cooling Load of Buildings;242
12.2.1;9.1.1 Rule of Thumb;242
12.2.2;9.1.2 Steady State Cooling Load;242
12.2.3;9.1.3 Cooling Load Determination by Dynamic Simulations;248
12.3;9.2 Techniques for Cooling of the Buildings;248
12.4;9.3 Mechanical Cooling of nZEB;250
12.5;9.4 Mechanical Space Cooling Systems for nZEB;256
12.5.1;9.4.1 Direct Evaporation (DX) Cooling Systems;256
12.5.2;9.4.2 Chilled Water Space Cooling Systems;257
12.5.2.1;9.4.2.1 Major Components of Chilled Water Space Cooling Systems;259
12.5.2.1.1;Chillers;259
12.5.2.1.2;Compressors;260
12.5.2.1.3;Cooling Towers;261
12.5.2.1.4;Cold Storage;262
12.5.2.1.5;Chilled Water Distribution Pipe Network;264
12.5.2.1.6;End Heat Exchangers;264
12.5.2.1.7;Control of Chilled Water Space Cooling Systems;264
12.6;9.5 Environmental Impacts of Space Cooling;265
12.7;9.6 Energy Needs and Delivered Energy for Space Cooling;265
12.8;9.7 Principles of Rational Use of Energy for Space Cooling;268
12.8.1;9.7.1 Architecture Design;268
12.8.1.1;9.7.1.1 Reducing the Solar Gains Through Transparent Envelope Structures;268
12.8.1.2;9.7.1.2 Reducing the Solar Heat Gains Though Opaque Structures;269
12.8.1.3;9.7.1.3 Greening of Building Structures;270
12.8.2;9.7.2 Natural Cooling and Free Cooling of the Buildings;272
12.8.3;9.7.3 Free Cooling;272
12.8.4;9.7.4 Solar Cooling;274
12.8.5;9.7.5 Other Measures for Increasing Energy Efficiency of Space Cooling Systems;277
12.9;References;278
13;10 Domestic Hot Water Heating in nZEB;279
13.1;Abstract;279
13.2;10.1 Demand for DHW;279
13.3;10.2 DHW Heating Load;281
13.4;10.3 Energy Needs and Delivered Energy for DHW;286
13.5;10.4 Principles of Rational Use of Energy for DHW Heating;289
13.5.1;10.4.1 DHW Solar Heating;289
13.5.2;10.4.2 Waste Heat Recovery from Drain-Water;293
13.5.3;10.4.3 Heat Recovery from Utility Sewage Systems;293
13.6;10.5 Treatment of DHW for Reliable and Healthy Operation of DHW Heating System;294
13.7;10.6 Avoiding the Presence of Harmful Microorganisms in Domestic Hot Water;297
13.8;References;298
14;11 Ventilation of nZEB;299
14.1;Abstract;299
14.2;11.1 Natural Ventilation;300
14.2.1;11.1.1 Advantages and Disadvantages of Natural Ventilation;300
14.2.2;11.1.2 How Natural Ventilation Works;301
14.2.3;11.1.3 Determination of Ventilation Air Flow Rate in Case of Natural Ventilation;304
14.2.4;11.1.4 Controlling of Natural Ventilation;308
14.3;11.2 Mechanical Ventilation;308
14.3.1;11.2.1 Advantages and Disadvantages of Mechanical Ventilation;308
14.3.2;11.2.2 Mechanical Ventilation Systems;310
14.3.3;11.2.3 Types of Heat Recovery Units (HRU) in Air Handling Units (AHU);311
14.3.3.1;11.2.3.1 Temperature Efficiency and Enthalpy Efficiency of Heat Recovery;311
14.3.3.2;11.2.3.2 Cross-Flow HRU;312
14.3.3.3;11.2.3.3 Counter-Flow HRU;312
14.3.3.4;11.2.3.4 Rotary Wheel HRU;314
14.3.3.5;11.2.3.5 Flip-Flop HRU;315
14.3.3.6;11.2.3.6 Indirect HRU;316
14.3.4;11.2.4 Fans;317
14.3.5;11.2.5 Filters in AHU;318
14.3.6;11.2.6 Design of Mechanical Systems with Balanced Ventilation and Heat Recovery;319
14.3.6.1;11.2.6.1 Centralized Ventilation Systems;319
14.3.6.2;11.2.6.2 Design of Distribution Duct System;320
14.3.6.3;11.2.6.3 Decentralized Ventilation Systems;322
14.4;11.3 Energy Efficiency Indicators of Mechanical Ventilation Systems with HRU;325
14.4.1;11.3.1 Energy Needs and Delivered Energy for Mechanical Ventilation;329
14.5;11.4 Techniques for Improving Energy Efficiency of Ventilation;330
14.5.1;11.4.1 Increasing Heat Recovery Efficiency by Ground Heat Exchanger (GHX);330
14.5.2;11.4.2 Increasing Energy Efficiency of Buildings with Passive Cooling with Night-Time Natural Ventilation;333
14.5.3;11.4.3 Increasing Energy Efficiency of Buildings with Integration of Building Service Systems;334
14.6;References;336
15;12 Energy Efficient Lighting of nZEB;337
15.1;Abstract;337
15.2;12.1 Light;337
15.3;12.2 Visual Comfort;339
15.4;12.3 Sources of Light;339
15.4.1;12.3.1 Daylight;339
15.4.2;12.3.2 The Luminance of the Clear Sky;342
15.4.3;12.3.3 The Luminance of the Overcast Sky and the CIE Overcast Sky;343
15.4.4;12.3.4 Luminous Efficacy of the Direct and the Diffuse Solar Radiation;344
15.4.5;12.3.5 Availability of Daylight;345
15.5;12.4 Artificial Sources of Light;345
15.6;12.5 Requirements and Criteria of Visual Comfort;348
15.6.1;12.5.1 Illuminance;348
15.6.2;12.5.2 Daylight Factor;349
15.7;12.6 Principles of Rational Use of Energy for Lighting;351
15.7.1;12.6.1 Energy Needs and Delivered Energy for Lighting of nZEB;352
15.8;References;357
16;13 Energy Labelling of Buildings;359
16.1;Abstract;359
16.2;13.1 Energy Performance Certificates of Buildings;360
16.2.1;13.1.1 Calculated Energy Performance Certificate of Building (cEPC);361
16.2.2;13.1.2 Measured Energy Performance Certificate (mEPC);363
16.3;Reference;366
17;14 Environmental Labelling of Buildings;367
17.1;Abstract;367
17.2;14.1 Sustainable Development and Environmental Impacts of Buildings;367
17.3;14.2 Ecodesign and Energy Labelling of Energy Related Products;369
17.4;14.3 Environmental Labels;371
17.5;14.4 Environment Product Declaration—EPD;374
17.5.1;14.4.1 Single Issue Type III Environmental Declarations;376
17.6;14.5 Life Cycle Impact Assessment (LCIA);378
17.6.1;14.5.1 Classification, Characterization, Normalization, and Weighting in LCIA Methodologies;379
17.7;14.6 Environmental Impact Assessment of Buildings;389
17.7.1;14.6.1 BREEAM;390
17.7.2;14.6.2 LEED;391
17.7.2.1;14.6.2.1 Rating and Certificates;393
17.7.3;14.6.3 DGNB;394
17.7.3.1;14.6.3.1 Rating and Certificates;395
17.7.4;14.6.4 Level(s);397
17.8;References;397



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.