Buch, Englisch, Band 1796, 326 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g
Reihe: Lecture Notes in Mathematics
Buch, Englisch, Band 1796, 326 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-44201-1
Verlag: Springer Berlin Heidelberg
Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
Weitere Infos & Material
1.Introduction.- Part I: Finite Element Approximation.- 2. hp-FEM for Reaction Diffusion Problems: Principal Results.- 3. hp Approximation.- Part II: Regularity in Countably Normed Spaces.- 4. The Countably Normed Spaces blb,e.- 5. Regularity Theory in Countably Normed Spaces.- Part III: Regularity in Terms of Asymptotic Expansions.- 6. Exponentially Weighted Countably Normed Spaces.- Appendix.- References.- Index.