Buch, Englisch, 264 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1-5, 2003
Buch, Englisch, 264 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
Reihe: C.I.M.E. Foundation Subseries
ISBN: 978-3-540-28586-1
Verlag: Springer Berlin Heidelberg
presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in 's lectures. introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Elastizität, Plastizität, Rheologie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen