Milani / Koksch | An Introduction to Semiflows | Buch | 978-0-367-45428-9 | sack.de

Buch, Englisch, 386 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 540 g

Milani / Koksch

An Introduction to Semiflows


1. Auflage 2019
ISBN: 978-0-367-45428-9
Verlag: Taylor & Francis Ltd (Sales)

Buch, Englisch, 386 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 540 g

ISBN: 978-0-367-45428-9
Verlag: Taylor & Francis Ltd (Sales)


This book introduces the class of dynamical systems called semiflows, which includes systems defined or modeled by certain types of differential evolution equations (DEEs). It focuses on the basic results of the theory of dynamical systems that can be extended naturally and applied to study the asymptotic behavior of the solutions of DEEs. The authors concentrate on three types of absorbing sets: attractors, exponential attractors, and inertial manifolds. They present the fundamental properties of these sets, and then proceed to show the existence of some of these sets for a number of dynamical systems generated by well-known physical models. In particular, they consider in full detail two particular PDEEs: a semilinear version of the heat equation and a corresponding version of the dissipative wave equation. These examples illustrate the most important features of the theory of semiflows and provide a sort of template that can be applied to the analysis of other models.

The material builds in a careful, gradual progression, developing the background needed by newcomers to the field, and culminating in a more detailed presentation of the main topics than found in most sources. The authors' approach to and treatment of the subject builds the foundation for more advanced references and research on global attractors, exponential attractors, and inertial manifolds.

Milani / Koksch An Introduction to Semiflows jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


Dynamical Processes. Attractors of Semiflows. Attractors for Semilinear Evolution Equations. Exponential Attractors. Inertial Manifolds. Examples. A Non-Existence Result for Inertial Manifolds. Appendix: Selected Results from Analysis. Bibliography. Index. Nomenclature


Albert J. Milani is a professor in the Department of Mathematics, University of Wisconsin-Milwaukee, USA.

Norbert J. Koksch is a docent in the Department of Mathematics, Technische Universität, Dresden, Germany



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.