Miranda Dias / Ferreira | Probabilistic Approaches to Robotic Perception | Buch | 978-3-319-02005-1 | sack.de

Buch, Englisch, Band 91, 242 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 5325 g

Reihe: Springer Tracts in Advanced Robotics

Miranda Dias / Ferreira

Probabilistic Approaches to Robotic Perception


2014
ISBN: 978-3-319-02005-1
Verlag: Springer International Publishing

Buch, Englisch, Band 91, 242 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 5325 g

Reihe: Springer Tracts in Advanced Robotics

ISBN: 978-3-319-02005-1
Verlag: Springer International Publishing


This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are two of the challenging questions robotics community and robotic researchers have been facing.

The development of robotic domain by the 1980s spurred the convergence of automation to autonomy, and the field of robotics has consequently converged towards the field of artificial intelligence (AI). Since the end of that decade, the general public’s imagination has been stimulated by high expectations on autonomy, where AI and robotics try to solve difficult cognitive problems through algorithms developed from either philosophical and anthropological conjectures or incomplete notions of cognitive reasoning. Many of these developments do not unveil even a few of the processes through which biological organisms solve these same problems with little energy and computing resources. The tangible results of this research tendency were many robotic devices demonstrating good performance, but only under well-defined and constrained environments. The adaptability to different and more complex scenarios was very limited.

In this book, the application of Bayesian models and approaches are described in order to develop artificial cognitive systems that carry out complex tasks in real world environments, spurring the design of autonomous, intelligent and adaptive artificial systems, inherently dealing with uncertainty and the “irreducible incompleteness of models”.

Miranda Dias / Ferreira Probabilistic Approaches to Robotic Perception jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Probabilistic Modelling for Robotic Perception.- Probabilistic Approaches for Robotic Perception in Practice.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.