Buch, Englisch, 348 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 667 g
Buch, Englisch, 348 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 667 g
ISBN: 978-1-032-66151-3
Verlag: Taylor & Francis Ltd (Sales)
Introduction to Mathematical Modeling and Computer Simulations, Second Edition continues to serve as an engaging and accessible textbook for undergraduates studying mathematical modeling and computer simulations. The book is heavily focussed on applications, and so may have a particular appeal to applied mathematicians, engineers, and others working in applied quantitative disciplines. The book may also be useful as a reference text for reference text for early-career stage practitioners.
New to this Edition:
- A new chapter on Machine Learning and Data Analysis in order to account for recent developments in the field.
- Chapter 9, ‘Asymptotic Methods in Composites’, has been entirely re-written to make it more consistent with industry and scientific standards.
- Includes an elementary introduction to programming in Python language.
- The Jupyter notebooks with examples for Chapter 10 and Appendix A are available for a download from www.Routledge.com/9781032661513.
Zielgruppe
Postgraduate, Professional Reference, and Undergraduate Advanced
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
I. General Principles and Methods. 1. Principles of Mathematical Modeling. 1.1. How to develop a mathematical model. 1.2. Types of models. 1.3. Stability of models. 1.4. Dimension, units, and scaling. 2. Numerical and symbolic computations. 2.1. Numerical and symbolic computations of derivatives and integrals. 2.2. Iterative methods. 2.3. Newton’s method. 2.4. Method of successive approximations. 2.5. Banach Fixed Point Theorem. 2.6. Why is it difficult to numerically solve some equations? Exercises and mini-projects. II. Basic Applications. 3. Application of calculus to classic mechanics. 3.1. Mechanical meaning of the derivative. 3.2. Integral and energy. 3.3. Potential energy. 3.4. Interpolation. 3.5. Integration of discrete functions. Exercises and mini-projects. 4. Ordinary differential equations and their applications. 4.1. Principle of transition for ODE. 4.2. Radioactive decay. 4.3. Logistic differential equation and its modifications. 4.4. Time delay. 4.5. Approximate solution to differential equations. 4.6. Harmonic oscillation. 4.7. Lotka-Volterra model. 4.8. Linearization. Exercises and mini-projects. 5. Stochastic models. 5.1. Method of least squares. 5.2. Fitting. 5.3. Method of Monte Carlo. 5.4. Random walk. Exercises and mini-projects. 6. One-dimensional stationary problems. 6.1. 1D geometry. 6.2. Second order equations. 6.3. 1D Green’s function. 6.4. Green’s function as a source. 6.5. The d–function. III. Advanced Applications. 7. Vector analysis. 7.1. Euclidean space R3. 7.2. Scalar, vector and mixed products. 7.3. Rotation of bodies. 7.4. Scalar, vector, and mixed product in Mathematica. 7.5. Tensors. 7.6. Scalar and vector fields. 7.7. Integral theorems. Exercises and mini-projects. 8. Heat equations. 8.1. Heat conduction equations. 8.2. Initial and boundary value problems. 8.3. Green’s function for the 1D heat equation. 8.4. Fourier series. 8.5. Separation of variables. 8.6. Discrete approximations of PDE. 8.7. Universality in Mathematical Modeling Table. Exercises and mini-projects. 9. Asymptotic methods in composites. 9.1. Principle of Asymptotology. 9.2. Effective properties of composites. 9.3. Principles of homogenization theory. 9.4. Maxwell’s approach. 9.5. Mathematical modeling and effective properties of composites. 9.6. Strategy of investigations. 9.7. Densely packed balls. Exercises and mini-projects. 10. Machine learning and data analysis. 10.1. Supervised, unsupervised learning, and regression. 10.2. Data storage. 10.3. A simple example of classification problem. 10.4. Reading, cleaning and scaling data. 10.5. Simple statistics. 10.6. Dimensionality reduction by PCA. 10.7. Selected models of supervised learning. 10.8. Selected models of unsupervised learning. 10.9. Regression. 10.10. Neural Networks. A. Introduction to Python.