Mollica / Preziosi / Rajagopal | Modeling of Biological Materials | E-Book | www.sack.de
E-Book

Mollica / Preziosi / Rajagopal Modeling of Biological Materials


1. Auflage 2007
ISBN: 978-0-8176-4411-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 368 Seiten

Reihe: Modeling and Simulation in Science, Engineering and Technology

ISBN: 978-0-8176-4411-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This unique collection highlights the central role played by modeling in general, and the modeling of mechanical considerations that have an effect on living matter. The volume collects several survey papers by actively working specialists, dealing with some of the most important problems - both theoretical and practical - in biomechanics. Written in a user-friendly style, these papers clearly explain both the biomedical and mechanical backgrounds associated with complex phenomena. This book may be used in interdisciplinary introductory courses covering various biomechanical topics for graduate students in applied mathematics, engineering, and biomedicine.

Mollica / Preziosi / Rajagopal Modeling of Biological Materials jetzt bestellen!

Weitere Infos & Material


1;Table of Contents;6
2;Preface;14
3;Rheology of Living Materials;17
3.1;1.1 Introduction;17
3.1.1;1.1.1 What Is Rheology?;17
3.1.2;1.1.2 Importance of Rheology in the Study of Biological Materials;18
3.2;1.2 Rheological Models;19
3.2.1;1.2.1 One-Dimensional Models;19
3.2.2;1.2.2 Three-Dimensional Models;22
3.3;1.3 Biological Materials;25
3.3.1;1.3.1 Cells;25
3.3.2;1.3.2 Tissues;26
3.4;1.4 Measurements of Rheological Properties of Cells and Tissues;27
3.4.1;1.4.1 Microrheology;27
3.4.2;1.4.2 Macroscopic Tests;31
3.5;1.5 Applications of Rheological Models;34
3.5.1;1.5.1 Cells;34
3.5.2;1.5.2 Tissues;38
3.6;1.6 Conclusions;41
3.7;1.7 References;42
4;Biochemical and Biomechanical Aspects of Blood Flow;48
4.1;2.1 Introduction;49
4.2;2.2 Anatomy and Physiology Summary;50
4.2.1;2.2.1 Heart;50
4.2.2;2.2.2 Circulatory System;55
4.2.3;2.2.3 Hemodynamics;56
4.2.4;2.2.4 Lymphatics;57
4.2.5;2.2.5 Microcirculation;58
4.3;2.3 Blood;59
4.3.1;2.3.1 Blood Cells;60
4.3.2;2.3.2 Blood Rheology;63
4.4;2.4 Signaling and Cell Stress-Reacting Components;64
4.4.1;2.4.1 Cell Membrane;64
4.4.2;2.4.2 Endocytosis;68
4.4.3;2.4.3 Cell Cytoskeleton;68
4.4.4;2.4.4 Adhesion Molecules;70
4.4.5;2.4.5 Intercellular Junctions;71
4.4.6;2.4.6 Extracellular Matrix;73
4.4.7;2.4.7 Microrheology;74
4.5;2.5 Heart Wall;75
4.5.1;2.5.1 Cardiomyocyte;76
4.5.2;2.5.2 Nodal Cells;79
4.5.3;2.5.3 Excitation–Contraction Coupling;80
4.5.4;2.5.4 Vessel Wall;85
4.5.5;2.5.5 Vessel Wall Rheology;91
4.5.6;2.5.6 Growth, Repair, and Remodeling;92
4.6;2.6 Cardiovascular Diseases;98
4.6.1;2.6.1 Atheroma;98
4.6.2;2.6.2 Aneurism;100
4.7;2.7 Conclusion;101
4.8;2.8 References;103
5;Theoretical Modeling of Enlarging Intracranial Aneurysms;116
5.1;3.1 Introduction;117
5.2;3.2 Theoretical Framework;119
5.2.1;3.2.1 Kinematics;119
5.2.2;3.2.2 Fibrous Structure;121
5.2.3;3.2.3 Kinetics of G&R;122
5.2.4;3.2.4 Stress-Mediated G&R;122
5.2.5;3.2.5 Stress and Strain Energy Function;123
5.3;3.3 Simulations for Saccular Aneurysms;124
5.3.1;3.3.1 Method;124
5.3.2;3.3.2 Results;126
5.4;3.4 Simulations for Fusiform Aneurysms;128
5.4.1;3.4.1 Method;128
5.4.2;3.4.2 Results;130
5.5;3.5 Fluid–Solid Interaction;133
5.6;3.6 Discussion;136
5.7;3.7 References;137
6;Theoretical Modeling of Cyclically Loaded, Biodegradable Cylinders;139
6.1;4.1 Cardiovascular Stents;141
6.2;4.2 Biodegradable Stents;143
6.3;4.3 Degradation, Erosion, and Elimination;147
6.4;4.4 Models of Degradation and Erosion;151
6.5;4.5 Model Description;153
6.6;4.6 Methods;158
6.7;4.7 Results;160
6.7.1;4.7.1 On the In.uence of the Load;163
6.7.2;4.7.2 On the In.uence of the Thickness of the Wall;166
6.7.3;4.7.3 On the Role of the Constant Governing the Mechanical Properties Reduction, ß;169
6.7.4;4.7.4 On the Parameter of the Mechanical Degradation Governing Equation, D(t);170
6.7.5;4.7.5 On the Shape of D(t);171
6.8;4.8 Discussion;172
6.9;4.9 Conclusions;178
6.10;4.10 References;179
7;Regulation of Hemostatic System Function by Biochemical and Mechanical Factors;192
7.1;5.1 Components of the Hemostatic System;193
7.1.1;5.1.1 Platelets;193
7.1.2;5.1.2 Coagulation Factors;196
7.1.3;5.1.3 Anticoagulant Factors;199
7.1.4;5.1.4 The Fibrinolytic System;200
7.2;5.2 Vascular Physiology in the Context of Hemostasis;200
7.2.1;5.2.1 Endothelial Regulation of Local Hemodynamics;201
7.2.2;5.2.2 Platelet–Endothelial Interactions;201
7.2.3;5.2.3 Endothelial Regulation of the Coagulation Cascade;203
7.3;5.3 Mechanics and E.ects on Hemostasis;204
7.3.1;5.3.1 Mechanical Properties of Blood and Clots;204
7.3.2;5.3.2 Hemodynamics;207
7.4;5.4 Developing Physiological Experimental Model Systems and Mathematical Models for Coagulation;210
7.5;5.5 Conclusion;211
7.6;5.6 References;212
8;Mechanical Properties of Human Mineralized Connective Tissues;224
8.1;6.1 Introduction;225
8.1.1;6.1.1 Mechanical Testing;225
8.1.2;6.1.2 Imaging;227
8.1.3;6.1.3 Structure–Property Relationship;227
8.1.4;6.1.4 Hierarchical Structures in Hard Tissue;228
8.1.5;6.1.5 Elastic Properties of Individual Trabeculae;229
8.1.6;6.1.6 Elastic Properties of Single Osteons;230
8.2;6.2 Trabecular Bone;232
8.2.1;6.2.1 Tibial Trabecular Bone;233
8.2.2;6.2.2 Trabecular Bone from the Vertebral Body;235
8.2.3;6.2.3 Trabecular Bone from the Femur;239
8.2.4;6.2.4 Trabecular Bone from the Mandible;241
8.2.5;6.2.5 Anisotropy in the Elastic Modulus of Trabecular Bone;241
8.2.6;6.2.6 Viscoelasticity of Trabecular Bone;243
8.3;6.3 Cortical Bone;244
8.3.1;6.3.1 Elastic Properties of Cortical Bone at a Macroscale Level;245
8.3.2;6.3.2 Yield and Failure Properties of Cortical Bone;247
8.3.3;6.3.3 Viscoelasticity of Cortical Bone;249
8.3.4;6.3.4 Fracture Mechanics;250
8.3.5;6.3.5 Fatigue of Cortical Bone;251
8.4;6.4 Dental Tissues;252
8.4.1;6.4.1 Elastic Properties;254
8.4.2;6.4.2 Ultimate Static Properties of Dentine;257
8.4.3;6.4.3 Viscoelastic Properties;258
8.4.4;6.4.4 Fracture Properties;259
8.4.5;6.4.5 Fatigue Properties;260
8.5;6.5 References;260
9;Mechanics in Tumor Growth;275
9.1;7.1 Introduction;275
9.2;7.2 Mechanics and Mechanotransduction in Tumor Growth;278
9.2.1;7.2.1 Cadherin Switch;278
9.2.2;7.2.2 Interaction with the Extracellular Matrix and Integrin Switch;282
9.2.3;7.2.3 Nutrient-Limited Growth and Tumor Structure;285
9.2.4;7.2.4 Angiogenic Switch;285
9.3;7.3 Multiphase Models;287
9.3.1;7.3.1 A Basic Triphasic Model: ECM, Tumor Cells, and Extracellular Liquid;288
9.4;7.4 Constitutive Equations;293
9.4.1;7.4.1 Elastic Fluid: An Example Describing Contact Inhibition of Growth;293
9.4.2;7.4.2 Viscous Fluid: An Example Showing Nutrient-Limited Growth;303
9.4.3;7.4.3 Evolving Natural Con.gurations in Tumor Growth;309
9.4.4;7.4.4 Viscoelasticity and Pseudo-Plasticity in Tumor Growth;317
9.5;7.5 Future Perspective;322
9.6;7.6 References;325
10;Inhomogeneities in Biological Membranes;334
10.1;8.1 Introduction;334
10.2;8.2 Bare Membranes;335
10.3;8.3 Inhomogeneous Membranes;340
10.4;8.4 Transmembrane Proteins;348
10.5;8.5 The Role of Thermal Fluctuations;356
10.6;8.6 Peripheral Proteins;360
10.7;8.7 Closing Question and Prospects;362
10.8;8.8 References;362


2 Biochemical and Biomechanical Aspects of Blood Flow (p. 33-34)

M. Thiriet

REO team
Laboratoire Jacques-Louis Lions, UMR CNRS 7598,
Universit´e Pierre et Marie Curie, F-75252 Paris cedex 05, and
INRIA, BP 105, F-78153 Le Chesnay Cedex.

Abstract. The blood vital functions are adaptative and strongly regulated. The various processes associated with the .owing blood involve multiple space and time scales. Biochemical and biomechanical aspects of the human blood circulation are indeed strongly coupled. The functioning of the heart, the transduction of mechanical stresses applied by the .owing blood on the endothelial and smooth muscle cells of the vessel wall, gives examples of the links between biochemistry and biomechanics in the physiology of the cardiovascular system and its regulation. The remodeling of the vessel of any site of the vasculature (blood vessels, heart) when the blood pressure increases, the angiogenesis, which occurs in tumors or which shunts a stenosed artery, illustrates pathophysiological processes. Moreover, focal wall pathologies, with the dysfunction of its biochemical machinery, such as lumen dilations (aneurisms) or narrowings (stenoses), are stress-dependent. This review is aimed at emphasizing the multidisciplinary aspects of investigations of multiple aspects of the blood flow.

2.1 Introduction

Biomechanics investigates the cardiovascular system by means of mechanical laws and principles. Biomechanical research related to the blood circulation is involved

1. In the motion of human beings, such as gait (blood supply, venous return in transiently compressed veins)
2. In organ rheology influenced by blood perfusion
3. In heat and mass transfer, especially in the context of mini-invasive therapy of tumors
4. Cell and tissue engineering
5. In the design of surgical repair and implantable medical devices

Macroscale biomechanical model of the cardiovascular system have been carried out with multiple goals:

1. Prediction
2. Development of pedagogical and medical tools
3. Computations of quantities inaccessible to measurements
4. Control
5. Optimization

In addition, macroscale simulations deal with subject-specific geometries, because of a high between-subject variability in anatomy, whatever the image-based approaches, either numerical and experimental methods, using stereolithography. The research indeed aims at developing computerassisted medical and surgical tools in order to learn, to explore, to plan, to guide, and to train to perform the tasks during interventional medicine and mini-invasive surgery. However, this last topic is beyond the goal of the present review.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.