Murty | Non-vanishing of L-Functions and Applications | Buch | 978-3-0348-0273-4 | sack.de

Buch, Englisch, 196 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Modern Birkhäuser Classics

Murty

Non-vanishing of L-Functions and Applications


1997
ISBN: 978-3-0348-0273-4
Verlag: Springer

Buch, Englisch, 196 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Modern Birkhäuser Classics

ISBN: 978-3-0348-0273-4
Verlag: Springer


This monograph brings together a collection of results on the non-vanishing of- functions.Thepresentation,thoughbasedlargelyontheoriginalpapers,issuitable forindependentstudy.Anumberofexerciseshavealsobeenprovidedtoaidinthis endeavour. The exercises are of varying di?culty and those which require more e?ort have been marked with an asterisk. The authors would like to thank the Institut d’Estudis Catalans for their encouragementof thiswork throughtheFerranSunyeriBalaguerPrize.Wewould also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty xi Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The dist- bution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical t- orems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s)=1. In the 1950’s, a new theme was introduced by Birch and Swinnerton-Dyer. Given an elliptic curve E over a number ?eld K of ?nite degree over Q,they associated an L-function to E and conjectured that this L-function extends to an entire function and has a zero at s = 1 of order equal to the Z-rank of the group of K-rational points of E. In particular, the L-function vanishes at s=1ifand only if E has in?nitely many K-rational points.

Murty Non-vanishing of L-Functions and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 The Prime Number Theorem and Generalizations.- 2 Artin L-Functions.- 3 Equidistribution and L-Functions.- 4 Modular Forms and Dirichlet Series.- 5 Dirichlet L-Functions.- 6 Non-Vanishing of Quadratic Twists of Modular L-Functions.- 7 Selberg’s Conjectures.- 8 Suggestions for Further Reading.


Murty, M. Ram
M. Ram Murty is a Professor of Mathematics at the Queen's University in Kingston, ON, Canada.

Murty, V. Kumar
V. Kumar Murty is a Professor of Mathematics at the University of Toronto.

M. Ram Murty is a Professor of Mathematics at the Queen's University in Kingston, ON, Canada.

V. Kumar Murty is a Professor of Mathematics at the University of Toronto.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.