E-Book, Englisch, 992 Seiten
Musgrave / Larsen / Sgobba Safety Design for Space Systems
1. Auflage 2009
ISBN: 978-0-08-055922-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 992 Seiten
ISBN: 978-0-08-055922-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation.
Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry.
It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance.
* The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed
* Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station.
* Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)
Until October 2012 Tommaso Sgobba has been responsible for flight safety at the European Space Agency (ESA), including human-rated systems, spacecraft re-entries, space debris, use of nuclear power sources, and planetary protection. He joined the European Space Agency in 1989, after 13 years in the aeronautical industry. Initially he supported the developments of the Ariane 5 launcher, several earth observation and meteorological satellites, and the early phase of the Hermes spaceplane. Later he became product assurance and safety manager for all European manned missions on Shuttle, MIR station, and for the European research facilities for the International Space Station. He chaired for 10 years the ESA ISS Payload Safety Review Panel, He was also instrumental in setting up the ESA Re-entry Safety Review Panel.
Tommaso Sgobba holds an M.S. in Aeronautical Engineering from the Polytechnic of Turin (Italy), where he was also professor of space system safety (1999-2001). He has published several articles and papers on space safety, and co-edited the text book 'Safety Design for Space Systems”, published in 2009 by Elsevier, that was also published later in Chinese. He co-edited the book entitled 'The Need for an Integrated Regulatory Regime for Aviation and Space”, published by Springer in 2011. He is member of the editorial board of the Space Safety Magazine.
Tommaso Sgobba received the NASA recognition for outstanding contribution to the International Space Station in 2004, and the prestigious NASA Space Flight Awareness (SFA) Award in 2007.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Safety Design for Space Systems;4
3;Copyright Page;5
4;Contents;6
5;Preface;24
6;Introduction;26
7;About the Editors;28
8;About the Contributors;32
9;Chapter 1: Introduction to Space Safety;70
9.1;1.1 Nasa and Safety;71
9.2;1.2 Definition of Safety and Risk;72
9.3;1.3 Managing Safety and Risk;72
9.4;1.4 The Book;74
9.5;References;74
10;Chapter 2: The Space Environment: Natural and Induced;76
10.1;2.1 The Atmosphere;77
10.1.1;2.1.1 Composition;77
10.1.2;2.1.2 Atomic Oxygen;82
10.1.3;2.1.3 The Ionosphere;84
10.2;2.2 Orbital Debris and Meteoroids;87
10.2.1;2.2.1 Orbital Debris;87
10.2.2;2.2.2 Meteoroids;95
10.3;2.3 Microgravity;100
10.3.1;2.3.1 Microgravity Defined;100
10.3.2;2.3.2 Methods of Attainment;103
10.3.3;2.3.3 Effects on Biological Processes and Astronaut Health;109
10.3.4;2.3.4 Unique Aspects of Travel to the Moon and Planetary Bodies;110
10.4;Recommended Reading;110
10.5;2.4 Acoutics;112
10.5.1;2.4.1 Acoustics Safety Issues;112
10.5.2;2.4.2 Acoustic Requirements;112
10.5.3;2.4.3 Compliance and Verification;119
10.5.4;2.4.4 Conclusions and Recommendations;120
10.6;Recommended Reading;120
10.7;2.5 Radiation;121
10.7.1;2.5.1 Ionizing Radiation;121
10.7.2;2.5.2 Radio Frequency Radiation;136
10.8;Recommended Reading;140
10.9;2.6 Natural and Induced Thermal Environments;141
10.9.1;2.6.1 Introduction to the Thermal Environment;141
10.9.2;2.6.2 Spacecraft Heat Transfer Considerations;141
10.9.3;2.6.3 The Natural Thermal Environment;142
10.9.4;2.6.4 The Induced Thermal Environment;149
10.9.5;2.6.5 Other Lunar and Planetary Environment Considerations;154
10.10;2.7 Combined Environmental Effects;155
10.10.1;2.7.1 Introduction to Environmental Effects;155
10.10.2;2.7.2 Combined Environments;156
10.10.3;2.7.3 Combined Effects;157
10.10.4;2.7.4 Ground Testing for Space Simulation;161
10.11;References;163
11;Chapter 3: Overview of Bioastronautics;174
11.1;3.1 Space Physiology;175
11.1.1;3.1.1 Muscular System;175
11.1.2;3.1.2 Skeletal System;176
11.1.3;3.1.3 Cardiovascular and Respiratory Systems;177
11.1.4;3.1.4 Neurovestibular System;179
11.1.5;3.1.5 Radiation;180
11.1.6;3.1.6 Nutrition;181
11.1.7;3.1.7 Immune System;182
11.1.8;3.1.8 Extravehicular Activity;183
11.2;3.2 Short and Long Duration Mission Effects;184
11.2.1;3.2.1 Muscular System;184
11.2.2;3.2.2 Skeletal System;185
11.2.3;3.2.3 Cardiovascular and Respiratory Systems;186
11.2.4;3.2.4 Neurovestibular System;188
11.2.5;3.2.5 Radiation;189
11.2.6;3.2.6 Nutrition;190
11.2.7;3.2.7 Immune System;190
11.2.8;3.2.8 Extravehicular Activity;191
11.3;3.3 Health Maintenance;192
11.3.1;3.3.1 Preflight Preparation;192
11.3.2;3.3.2 In-Flight Measures;195
11.3.3;3.3.3 In-Flight Medical Monitoring;208
11.3.4;3.3.4 Post-Flight Recovery;211
11.4;3.4 Crew Survival;212
11.4.1;3.4.1 Overview of Health Threats in Spaceflight;212
11.4.2;3.4.2 Early Work;213
11.4.3;3.4.3 Crew Survival on the Launch Pad, at Launch, and During Ascent;214
11.4.4;3.4.4 On-Orbit Safe Haven and Crew Transfer;219
11.4.5;3.4.5 Entry, Landing, and Post-Landing;219
11.5;3.5 Conclusion;221
11.6;Acknowledgment;221
11.7;References;222
12;Chapter 4: Basic Principles of Space Safety;232
12.1;4.1 The Cause of Accidents;232
12.2;4.2 Principles and Methods;234
12.2.1;4.2.1 Hazard Elimination and Limitation;234
12.2.2;4.2.2 Barriers and Interlocks;235
12.2.3;4.2.3 Fail-Safe Design;236
12.2.4;4.2.4 Failure and Risk Minimization;236
12.2.5;4.2.5 Monitoring, Recovery, and Escape;238
12.2.6;4.2.6 Crew Survival Systems;238
12.3;4.3 The Safety Review Process;239
12.3.1;4.3.1 Safety Requirements;239
12.3.2;4.3.2 The Safety Panels;240
12.3.3;4.3.3 The Safety Reviews;240
12.3.4;4.3.4 Nonconformances;242
12.4;References;243
13;Chapter 5: Human Rating Concepts;244
13.1;5.1 Human Rating Defined;244
13.1.1;5.1.1 Human Rated Systems;244
13.1.2;5.1.2 The NASA Human Rating and Process;245
13.1.3;5.1.3 The Human Rating Plan;246
13.1.4;5.1.4 The NASA Human Rating Certification Process;247
13.1.5;5.1.5 Human Rating in Commercial Human Spaceflight;247
13.2;5.2 Human Rating Requirements and Approaches;248
13.2.1;5.2.1 Key Human Rating Technical Requirements;248
13.2.2;5.2.2 Programmatic Requirements;251
13.2.3;5.2.3 Test Requirements;252
13.2.4;5.2.4 Data Requirements;253
13.3;Reference;253
14;Chapter 6: Life Support Systems Safety;254
14.1;6.1 Atmospheric Conditioning and Control;257
14.1.1;6.1.1 Monitoring Is the Key to Control;257
14.1.2;6.1.2 Atmospheric Conditioning;259
14.1.3;6.1.3 Carbon Dioxide Removal;265
14.2;6.2 Trace Contaminant Control;267
14.2.1;6.2.1 Of Tight Buildings and Spacecraft Cabins;267
14.2.2;6.2.2 Trace Contaminant Control Methodology;270
14.2.3;6.2.3 Trace Contaminant Control Design Considerations;278
14.3;6.3 Assessment of Water Quality in the Spacecraft Environment: Mitigating Health and Safety Concerns;280
14.3.1;6.3.1 Scope of Water Resources Relevant to Spaceflight;280
14.3.2;6.3.2 Spacecraft Water Quality and the Risk Assessment Paradigm;281
14.3.3;6.3.3 Water Quality Monitoring;286
14.3.4;6.3.4 Conclusion and Future Directions;289
14.4;6.4 Waste Management;289
14.5;6.5 Summary of Life Support Systems;290
14.6;References;291
15;Chapter 7: Emergency Systems;294
15.1;7.1 Space Rescue;294
15.1.1;7.1.1 Legal and Diplomatic Basis;295
15.1.2;7.1.2 The Need for Rescue Capability;295
15.1.3;7.1.3 Rescue Modes and Probabilities;298
15.1.4;7.1.4 Hazards in the Different Phases of Flight;300
15.1.5;7.1.5 Historic Distribution of Failures;301
15.1.6;7.1.6 Historic Rescue Systems;302
15.1.7;7.1.7 Space Rescue Is Primarily Self Rescue;312
15.1.8;7.1.8 Limitations of Ground Based Rescue;316
15.1.9;7.1.9 The Crew Return Vehicle as a Study in Space Rescue;318
15.1.10;7.1.10 Safe Haven;324
15.1.11;7.1.11 Conclusions;325
15.2;7.2 Personal Protective Equipment;325
15.2.1;7.2.1 Purpose of Personal Protective Equipment;325
15.2.2;7.2.2 Types of Personal Protective Equipment;326
15.3;References;334
16;Chapter 8: Collision Avoidance Systems;336
16.1;8.1 Docking Systems and Operations;337
16.1.1;8.1.1 Docking Systems as a Means for Spacecraft Orbital Mating;337
16.1.2;8.1.2 Design Approaches Ensuring Docking Safety and Reliability;339
16.1.3;8.1.3 Design Features Ensuring the Safety and Reliability of Russian Docking Systems;344
16.1.4;8.1.4 Analyses and Tests Performed for Verification of Safety and Reliability of Russian Docking Systems;347
16.2;Acknowledgment;349
16.3;8.2 Descent and Landing Systems;349
16.3.1;8.2.1 Parachute Systems;350
16.3.2;8.2.2 Known Parachute Anomalies and Lessons Learned;365
16.4;Acknowledgment;368
16.5;References;368
17;Chapter 9: Robotic Systems Safety;370
17.1;9.1 Generic Robotic Systems;370
17.1.1;9.1.1 Controller and Operator Interface;371
17.1.2;9.1.2 Arms and Joints;371
17.1.3;9.1.3 Drive System;372
17.1.4;9.1.4 Sensors;372
17.1.5;9.1.5 End Effector;372
17.2;9.2 Space Robotics Overview;372
17.3;9.3 Identification of Hazards and Their Causes;374
17.3.1;9.3.1 Electrical and Electromechanical Malfunctions;376
17.3.2;9.3.2 Mechanical and Structural Failures;376
17.3.3;9.3.3 Failure in the Control Path;376
17.3.4;9.3.4 Operator Error;376
17.3.5;9.3.5 Other Hazards;376
17.4;9.4 Hazard Mitigation in Design;377
17.4.1;9.4.1 Electrical and Mechanical Design and Redundancy;377
17.4.2;9.4.2 Operator Error;377
17.4.3;9.4.3 System Health Checks;377
17.4.4;9.4.4 Emergency Motion Arrest;378
17.4.5;9.4.5 Proximity Operations;378
17.4.6;9.4.6 Built in Test;379
17.4.7;9.4.7 Safety Algorithms;379
17.5;9.5 Hazard Mitigation Through Training;379
17.6;9.6 Hazard Mitigation for Operations;381
17.7;9.7 Case Study: Understanding Canadarm2 and Space Safety;382
17.7.1;9.7.1 The Canadarm2;382
17.7.2;9.7.2 Cameras;382
17.7.3;9.7.3 Force Moment Sensor;383
17.7.4;9.7.4 Training;384
17.7.5;9.7.5 Hazard Concerns and Associated Hazard Mitigation;385
17.8;9.8 Summary;386
17.9;References;387
18;Chapter 10: Meteoroid and Debris Protection;388
18.1;10.1 Risk Control Measures;388
18.1.1;10.1.1 Maneuvering;388
18.1.2;10.1.2 Shielding;393
18.2;10.2 Emergency Repair Considerations for Spacecraft Pressure Wall Damage;401
18.2.1;10.2.1 Balanced Mitigation of Program Risks;401
18.2.2;10.2.2 Leak Location System and Operational Design Considerations;406
18.2.3;10.2.3 Ability to Access the Damaged Area;406
18.2.4;10.2.4 Kit Design and Certification Considerations (1 is too many; 100 are not enough)407
18.2.5;10.2.5 Recertification of the Repaired Pressure Compartment for Use by the Crew;407
18.3;References;408
19;Chapter 11: Noise Control Design;410
19.1;11.1 Introduction;410
19.2;11.2 Noise Control Plan;410
19.2.1;11.2.1 Noise Control Strategy;411
19.2.2;11.2.2 Acoustic Analysis;413
19.2.3;11.2.3 Testing and Verification;413
19.3;11.3 Noise Control Design Applications;414
19.3.1;11.3.1 Noise Control at the Source;415
19.3.2;11.3.2 Path Noise Control;417
19.3.3;11.3.3 Noise Control in the Receiving Space;422
19.3.4;11.3.4 Post-Design Noise Mitigation;424
19.4;11.4 Conclusions and Recommendations;424
19.5;Recommended reading;425
19.6;References;425
20;Chapter 12: Materials Safety;428
20.1;12.1 Toxic Offgassing;429
20.1.1;12.1.1 Materials Offgassing Controls;430
20.1.2;12.1.2 Materials Testing;431
20.1.3;12.1.3 Spacecraft Module Testing;432
20.2;12.2 Stress-Corrosion Cracking;432
20.2.1;12.2.1 What Is Stress-Corrosion Cracking?;433
20.2.2;12.2.2 Prevention of Stress-Corrosion Cracking;433
20.2.3;12.2.3 Testing Materials for Stress-Corrosion Cracking;435
20.2.4;12.2.4 Design for Stress-Corrosion Cracking;437
20.2.5;12.2.5 Requirements for Spacecraft Hardware;438
20.2.6;12.2.6 Stress-Corrosion Cracking in Propulsion Systems;440
20.3;12.3 Conclusions;442
20.4;References;442
21;Chapter 13: Oxygen Systems Safety;444
21.1;13.1 Oxygen Pressure System Design;444
21.1.1;13.1.1 Introduction;444
21.1.2;13.1.2 Design Approach;446
21.1.3;13.1.3 Oxygen Compatibility Assessment Process;455
21.2;13.2 Oxygen Generators;461
21.2.1;13.2.1 Electrochemical Systems for Oxygen Production;461
21.2.2;13.2.2 Solid Fuel Oxygen Generators (Oxygen Candles);467
21.3;References;470
22;Chapter 14: Avionics Safety;472
22.1;14.1 Introduction to Avionics Safety;472
22.2;14.2 Electrical Grounding and Electrical Bonding;473
22.2.1;14.2.1 Defining Characteristics of an Electrical Ground Connection;474
22.2.2;14.2.2 Control of Electric Current;475
22.2.3;14.2.3 Electrical Grounds Can Be Signal Return Paths;475
22.2.4;14.2.4 Where and How Electrical Grounds Should Be Connected;475
22.2.5;14.2.5 Defining Characteristics of an Electrical Bond;477
22.2.6;14.2.6 Types of Electrical Bonds;477
22.2.7;14.2.7 Electrical Bond Considerations for Dissimilar Metals;478
22.2.8;14.2.8 Electrical Ground and Bond Connections for Shields;479
22.3;Recommended Reading;479
22.4;14.3 Safety Critical Computer Control;480
22.4.1;14.3.1 Partial Computer Control;481
22.4.2;14.3.2 Total Computer Control: Fail Safe;482
22.5;14.4 Circuit Protection: Fusing;483
22.5.1;14.4.1 Circuit Protection Methods;483
22.5.2;14.4.2 Circuit Protectors;485
22.5.3;14.4.3 Design Guidance;485
22.6;14.5 Electrostatic Discharge Control;486
22.6.1;14.5.1 Fundamentals;487
22.6.2;14.5.2 Various Levels of Electrostatic Discharge Concern;489
22.7;Recommended Reading;495
22.8;14.6 Arc Tracking;497
22.8.1;14.6.1 A New Failure Mode;497
22.8.2;14.6.2 Characteristics of Arc Tracking;500
22.8.3;14.6.3 Likelihood of an Arc Tracking Event;501
22.8.4;14.6.4 Prevention of Arc Tracking;501
22.8.5;14.6.5 Verification of Protection and Management of Hazards;502
22.8.6;14.6.6 Summary;502
22.9;14.7 Corona Control in High Voltage Systems;503
22.9.1;14.7.1 Associated Environments;503
22.9.2;14.7.2 Design Criteria;504
22.9.3;14.7.3 Verification and Testing;505
22.10;Recommended Reading;506
22.11;14.8 Extravehicular Activity Considerations;506
22.11.1;14.8.1 Displays and Indicators Used in Space;507
22.11.2;14.8.2 Mating and Demating of Powered Connectors;507
22.11.3;14.8.3 Single Strand Melting Points;508
22.11.4;14.8.4 Battery Removal and Installation;510
22.11.5;14.8.5 Computer or Operational Control of Inhibits;511
22.12;14.9 Spacecraft electromagnetic interference and electromagnetic compatibility control;511
22.12.1;14.9.1 Electromagnetic Compatibility Needs for Space Applications;512
22.12.2;14.9.2 Basic Electromagnetic Compatibility Interactions and a Safety Margin;513
22.12.3;14.9.3 Mission Driven Electromagnetic Interference Design: The Case for Grounding;514
22.12.4;14.9.4 Electromagnetic Compatibility Program for Spacecraft;515
22.13;14.10 Design and Testing of Safety Critical Circuits;519
22.13.1;14.10.1 Safety Critical Circuits: Conducted Mode;519
22.13.2;14.10.2 Safety Critical Circuits: Radiated Mode;525
22.14;14.11 Electrical Hazards;530
22.14.1;14.11.1 Introduction;530
22.14.2;14.11.2 Electrical Shock;530
22.14.3;14.11.3 Physiological Considerations;531
22.14.4;14.11.4 Electrical Hazard Classification;532
22.14.5;14.11.5 Leakage Current;533
22.14.6;14.11.6 Bioinstrumentation;533
22.14.7;14.11.7 Electrical Hazard Controls;534
22.14.8;14.11.8 Verification of Electrical Hazard Controls;537
22.14.9;14.11.9 Electrical Safety Design Considerations;537
22.15;14.12 Avionics Lessons Learned;538
22.15.1;14.12.1 Electronic Design;538
22.15.2;14.12.2 Physical Design;539
22.15.3;14.12.3 Materials and Sources;540
22.15.4;14.12.4 Damage Avoidance;541
22.15.5;14.12.5 System Aspects;541
22.16;References;542
23;Chapter 15: Software System Safety;544
23.1;15.1 Introduction;544
23.2;15.2 The Software Safety Problem;545
23.2.1;15.2.1 System Accidents;545
23.2.2;15.2.2 The Power and Limitations of Abstraction from Physical Design;546
23.2.3;15.2.3 Reliability Versus Safety for Software;548
23.2.4;15.2.4 Inadequate System Engineering;551
23.2.5;15.2.5 Characteristics of Embedded Software;553
23.3;15.3 Current Practice;555
23.3.1;15.3.1 System Safety;556
23.4;15.4 Best Practice;558
23.4.1;15.4.1 Management of Software-Intensive, Safety-Critical Projects;559
23.4.2;15.4.2 Basic System Safety Engineering Practices and Their Implications for Software Intensive Systems;560
23.4.3;15.4.3 Specifications;562
23.4.4;15.4.4 Requirements Analysis;563
23.4.5;15.4.5 Model-Based Software Engineering and Software Reuse;563
23.4.6;15.4.6 Software Architecture;565
23.4.7;15.4.7 Software Design;566
23.4.8;15.4.8 Design of Human-Computer Interaction;569
23.4.9;15.4.9 Software Reviews;570
23.4.10;15.4.10 Verification and Assurance;571
23.4.11;15.4.11 Operations;572
23.5;15.5 Summary ;572
23.6;References;572
24;Chapter 16: Battery Safety;576
24.1;16.1 Introduction;576
24.2;16.2 General Design And Safety Guidelines;577
24.3;16.3 Battery Types;577
24.4;16.4 Battery Models;578
24.5;16.5 Hazard and Toxicity Categorization;578
24.6;16.6 Battery Chemistry;578
24.6.1;16.6.1 Alkaline Batteries;578
24.6.2;16.6.2 Lithium Batteries;581
24.6.3;16.6.3 Silver Zinc Batteries;592
24.6.4;16.6.4 Lead Acid Batteries;594
24.6.5;16.6.5 Nickel Cadmium Batteries;596
24.6.6;16.6.6 Nickel Metal Hydride Batteries;597
24.6.7;16.6.7 Nickel Hydrogen Batteries;602
24.6.8;16.6.8 Lithium-Ion Batteries;604
24.7;16.7 Storage, Transportation, and Handling;613
24.8;References;614
25;Chapter 17: Mechanical Systems Safety;618
25.1;17.1 Safety Factors;618
25.1.1;17.1.1 Types of Safety Factors;619
25.1.2;17.1.2 Safety Factors Typical of Human Rated Space Programs;620
25.1.3;17.1.3 Things That Influence the Choice of Safety Factors;620
25.2;17.2 Spacecraft Structures;620
25.2.1;17.2.1 Mechanical Requirements;621
25.2.2;17.2.2 Space Mission Environment and Mechanical Loads;623
25.2.3;17.2.3 Project Overview: Successive Designs and Iterative Verification of Structural Requirements;626
25.2.4;17.2.4 Analytical Evaluations;628
25.2.5;17.2.5 Structural Test Verification;628
25.2.6;17.2.6 Spacecraft Structural Model Philosophy;630
25.2.7;17.2.7 Materials and Processes;631
25.2.8;17.2.8 Manufacturing of Spacecraft Structures;633
25.3;Recommended Reading;635
25.4;17.3 Fracture Control;636
25.4.1;17.3.1 Basic Requirements;636
25.4.2;17.3.2 Implementation;636
25.4.3;17.3.3 Summary;637
25.5;17.4 Pressure Vessels, Lines, and Fittings;637
25.5.1;17.4.1 Pressure Vessels;637
25.5.2;17.4.2 Lines and Fittings;643
25.5.3;17.4.3 Space Pressure Systems Standards;644
25.5.4;17.4.4 Summary;644
25.6;17.5 Composite Overwrapped Pressure Vessels;645
25.6.1;17.5.1 The Composite Overwrapped Pressure Vessel System;645
25.6.2;17.5.2 Monolithic Metallic Pressure Vessel Failure Modes;646
25.6.3;17.5.3 Composite Overwrapped Pressure Vessel Failure Modes;647
25.6.4;17.5.4 Composite Overwrapped Pressure Vessel Impact Sensitivity;648
25.6.5;17.5.5 Summary;650
25.7;17.6 Structural Design of Glass and Ceramic Components for Space System Safety;650
25.7.1;17.6.1 Strength Characteristics of Glass and Ceramics;651
25.7.2;17.6.2 Defining Loads and Environments;655
25.7.3;17.6.3 Design Factors;657
25.7.4;17.6.4 Meeting Life Requirements with Glass and Ceramics;658
25.8;17.7 Safety Critical Mechanisms;660
25.8.1;17.7.1 Designing for Failure Tolerance;660
25.8.2;17.7.2 Design and Verification of Safety Critical Mechanisms;663
25.8.3;17.7.3 Reduced Failure Tolerance;671
25.8.4;17.7.4 Review of Safety Critical Mechanisms;673
25.9;References;674
26;Chapter 18: Containment of Hazardous Materials;676
26.1;18.1 Toxic Materials;679
26.1.1;18.1.1 Fundamentals of Toxicology;679
26.1.2;18.1.2 Toxicological Risks to Air Quality in Spacecraft;682
26.1.3;18.1.3 Risk Management Strategies;687
26.2;18.2 Biohazardous Materials;690
26.2.1;18.2.1 Microbiological Risks Associated with Spaceflight;690
26.2.2;18.2.2 Risk Mitigation Approaches;691
26.2.3;18.2.3 Major Spaceflight Specific Microbiological Risks;692
26.3;18.3 Shatterable Materials;700
26.3.1;18.3.1 Shatterable Materials in a Habitable Compartment;700
26.3.2;18.3.2 Program Implementation;700
26.3.3;18.3.3 Containment Concepts for Internal Equipment;702
26.3.4;18.3.4 Containment Concepts for Exterior Equipment;705
26.3.5;18.3.5 General Comments About Working with Shatterable Materials;707
26.4;18.4 Containment Design Approach;708
26.4.1;18.4.1 Fault Tolerance;708
26.4.2;18.4.2 Design for Minimum Risk;708
26.5;18.5 Containment Design Methods;709
26.5.1;18.5.1 Containment Environments;709
26.5.2;18.5.2 Design of Containment Systems;709
26.6;18.6 Safety Controls;712
26.6.1;18.6.1 Proper Design;712
26.6.2;18.6.2 Materials Selection;712
26.6.3;18.6.3 Materials Compatibility;712
26.6.4;18.6.4 Proper Workmanship;713
26.6.5;18.6.5 Proper Loading or Filling;713
26.6.6;18.6.6 Fracture Control;713
26.7;18.7 Safety Verifications;713
26.7.1;18.7.1 Strength Analysis;714
26.7.2;18.7.2 Qualification Tests;714
26.7.3;18.7.3 Acceptance Tests;715
26.7.4;18.7.4 Proof Tests;716
26.7.5;18.7.5 Qualification of Procedures;716
26.8;18.8 Conclusions;717
26.9;References;718
27;Chapter 19: Failure Tolerance Design;722
27.1;19.1 Safe;722
27.1.1;19.1.1 Order of Precedence;722
27.2;19.2 Hazard;724
27.2.1;19.2.1 Hazard Controls;724
27.2.2;19.2.2 Design to Tolerate Failures;725
27.3;19.3 Hazardous Functions;727
27.3.1;19.3.1 Must Not Work Hazardous Function;727
27.3.2;19.3.2 Must Work Hazardous Function;728
27.4;19.4 Design for Minimum Risk;728
27.5;19.5 Conclusions;729
27.6;References;729
28;Chapter 20: Propellant Systems Safety;730
28.1;20.1 Solid Propellant Propulsion Systems Safety;731
28.1.1;20.1.1 Solid Propellants;731
28.1.2;20.1.2 Solid Propellant Systems for Space Applications;733
28.1.3;20.1.3 Safety Hazards;733
28.1.4;20.1.4 Handling, Transport, and Storage;739
28.1.5;20.1.5 Inadvertent Ignition;740
28.1.6;20.1.6 Safe Ignition Systems Design;741
28.1.7;20.1.7 Conclusions;742
28.2;20.2 Liquid Propellant Propulsion Systems Safety;742
28.2.1;20.2.1 Planning;744
28.2.2;20.2.2 Containment Integrity;745
28.2.3;20.2.3 Thermal Control;746
28.2.4;20.2.4 Materials Compatibility;747
28.2.5;20.2.5 Contamination Control;747
28.2.6;20.2.6 Environmental Considerations;748
28.2.7;20.2.7 Engine and Thruster Firing Inhibits;748
28.2.8;20.2.8 Heightened Risk (Risk Creep);749
28.2.9;20.2.9 Instrumentation and Telemetry Data;750
28.2.10;20.2.10 End to End Integrated Instrumentation, Controls, and Redundancy Verification;750
28.2.11;20.2.11 Qualification;750
28.2.12;20.2.12 Total Quality Management (ISO 9001 or Equivalent);751
28.2.13;20.2.13 Preservicing Integrity Verification;751
28.2.14;20.2.14 Propellants Servicing;752
28.2.15;20.2.15 Conclusions;752
28.3;20.3 Hypergolic Propellants;752
28.3.1;20.3.1 Materials Compatibility;752
28.3.2;20.3.2 Material Degradation;753
28.3.3;20.3.3 Hypergolic Propellant Degradation;754
28.4;20.4 Propellant Fire;755
28.4.1;20.4.1 Hydrazine and Monomethylhydrazine Vapor;756
28.4.2;20.4.2 Liquid Hydrazine and Monomethylhydrazine;759
28.4.3;20.4.3 Hydrazine and Monomethylhydrazine Mists, Droplets, and Sprays;760
28.5;References;760
29;Chapter 21: Pyrotechnic Safety;764
29.1;21.1 Pyrotechnic Devices;764
29.1.1;21.1.1 Explosives;765
29.1.2;21.1.2 Initiators;765
29.2;21.2 Electroexplosive Devices;765
29.2.1;21.2.1 Safe Handling of Electroexplosive Devices;766
29.2.2;21.2.2 Designing for Safe Electroexplosive Device Operation;769
29.2.3;21.2.3 Pyrotechnic Safety of Mechanically Initiated Explosive Devices;771
29.3;References;773
30;Chapter 22: Extravehicular Activity Safety;774
30.1;22.1 Extravehicular Activity Environment;774
30.1.1;22.1.1 Definitions;775
30.1.2;22.1.2 Extravehicular Activity Space Suit;777
30.1.3;22.1.3 Sensory Degradation;779
30.1.4;22.1.4 Maneuvering and Weightlessness;779
30.1.5;22.1.5 Glove Restrictions;780
30.1.6;22.1.6 Crew Fatigue;780
30.1.7;22.1.7 Thermal Environment;780
30.1.8;22.1.8 Extravehicular Activity Tools;781
30.2;22.2 Suit Hazards;781
30.2.1;22.2.1 Inadvertent Contact Hazards;781
30.2.2;22.2.2 Area of Effect Hazards;784
30.3;22.3 Crew Hazards;785
30.3.1;22.3.1 Contamination of the Habitable Environment;785
30.3.2;22.3.2 Thermal Extremes;785
30.3.3;22.3.3 Lasers;787
30.3.4;22.3.4 Electrical Shock and Molten Metal;787
30.3.5;22.3.5 Entrapment;788
30.3.6;22.3.6 Emergency Ingress;788
30.3.7;22.3.7 Collision;789
30.3.8;22.3.8 Inadvertent Loss of Crew;790
30.4;22.4 Conclusions;791
30.5;References;791
31;Chapter 23: Emergency, Caution, and Warning System;794
31.1;23.1 System Overview;794
31.2;23.2 Historic Nasa Emergency, Caution, and Warning Systems;795
31.3;23.3 Emergency, Caution, and Warning System Measures;796
31.3.1;23.3.1 Event Classification Measures;796
31.3.2;23.3.2 Sensor Measures;797
31.3.3;23.3.3 Data System Measures;798
31.3.4;23.3.4 Annunciation Measures;799
31.4;23.4 Failure Isolation and Recovery;800
31.5;Reference;801
32;Chapter 24: Laser Safety;802
32.1;24.1 Background;802
32.1.1;24.1.1 Optical Spectrum;802
32.1.2;24.1.2 Biological Effects;803
32.2;24.2 Laser Characteristics;804
32.2.1;24.2.1 Laser Principles;804
32.2.2;24.2.2 Laser Types;806
32.3;24.3 Laser Standards;807
32.3.1;24.3.1 NASA Johnson Space Center Requirements;807
32.3.2;24.3.2 ANSI Standard Z136-1;808
32.3.3;24.3.3 Russian Standard;809
32.4;24.4 Lasers Used in Space;809
32.4.1;24.4.1 Radars;810
32.4.2;24.4.2 Illumination;810
32.4.3;24.4.3 Sensors;810
32.5;24.5 Design Considerations for Laser Safety;811
32.5.1;24.5.1 Ground Testing;811
32.5.2;24.5.2 Unique Space Environment;811
32.6;24.6 Conclusions;813
32.7;References;813
33;Chapter 25: Crew Training Safety: An Integrated Process;814
33.1;25.1 Training the Crew for Safety;815
33.1.1;25.1.1 Typical Training Flow;815
33.1.2;25.1.2 Principles of Safety Training for the Different Training Phases;821
33.1.3;25.1.3 Specific Safety Training for Different Equipment Categories;824
33.1.4;25.1.4 Safety Training for Different Operations Categories;830
33.2;25.2 Safety During Training;839
33.2.1;25.2.1 Overview;839
33.2.2;25.2.2 Training, Test, or Baseline Data Collection Model Versus Flight Model: Type, Fidelity, Source, Origin, and Category;840
33.2.3;25.2.3 Training Environments and Facilities;844
33.2.4;25.2.4 Training Models, Test Models, and Safety Requirements;850
33.2.5;25.2.5 Training Model, Test Model, and Baseline Data Collection Equipment Utilization Requirements;864
33.2.6;25.2.6 Qualification and Certification of Training Personnel;867
33.2.7;25.2.7 Training and Test Model Documentation;868
33.3;25.3 Training Development and Validation Process;872
33.3.1;25.3.1 The Training Development Process;875
33.3.2;25.3.2 The Training Review Process;876
33.3.3;25.3.3 The Role of Safety in the Training Development and Validation Processes;878
33.3.4;25.3.4 Feedback to the Safety Community from the Training Development and Validation Processes;881
33.4;25.4 Conclusions;884
33.5;References;884
34;Chapter 26: Safety Considerations for the Ground Environment;886
34.1;26.1 A Word about Ground Support Equipment;887
34.2;26.2 Documentation and Reviews;888
34.3;26.3 Roles and Responsibilities;888
34.4;26.4 Contingency Planning;888
34.5;26.5 Failure Tolerance;889
34.6;26.6 Training;889
34.7;26.7 Hazardous Operations;890
34.8;26.8 Tools;891
34.9;26.9 Human Factors;891
34.10;26.10 Biological Systems and Materials;892
34.11;26.11 Electrical;893
34.12;26.12 Radiation;893
34.13;26.13 Pressure Systems;894
34.14;26.14 Ordinance;894
34.15;26.15 Mechanical and Electromechanical Devices;895
34.16;26.16 Propellants;895
34.17;26.17 Cryogenics;895
34.18;26.18 Oxygen;895
34.19;26.19 Ground Handling;896
34.20;26.20 Software Safety;896
34.21;26.21 Summary;897
35;Chapter 27: Fire Safety;898
35.1;27.1 Characteristics of Fire in Space;899
35.1.1;27.1.1 Overview of Low Gravity Fire;899
35.1.2;27.1.2 Fuel and Oxidizer Supply and Flame Behavior;900
35.1.3;27.1.3 Fire Appearance and Signatures;901
35.1.4;27.1.4 Flame Ignition and Spread;905
35.1.5;27.1.5 Summary of Low Gravity Fire Characteristics;914
35.2;27.2 Design for Fire Prevention;916
35.2.1;27.2.1 Materials Flammability;916
35.2.2;27.2.2 Ignition Sources;921
35.3;27.3 Spacecraft Fire Detection;924
35.3.1;27.3.1 Prior Spacecraft Systems;924
35.3.2;27.3.2 Review of Low Gravity Smoke;927
35.3.3;27.3.3 Spacecraft Atmospheric Dust;928
35.3.4;27.3.4 Sensors for Fire Detection;929
35.4;27.4 Spacecraft Fire Suppression;933
35.4.1;27.4.1 Spacecraft Fire Suppression Methods;933
35.4.2;27.4.2 Considerations for Spacecraft Fire Suppression;936
35.5;References;946
36;Chapter 28: Safe Without Services Design;954
37;Chapter 29: Probabilistic Risk Assessment with Emphasis on Design;958
37.1;29.1 Basic Elements of Probabilistic Risk Assessment;958
37.1.1;29.1.1 Identification of Initiating Events;959
37.1.2;29.1.2 Application of Event Sequence Diagrams and Event Trees;960
37.1.3;29.1.3 Modeling of Pivotal Events;962
37.1.4;29.1.4 Linkage and Quantification of Accident Scenarios;963
37.2;29.2 Construction of a Probabilistic Risk Assessment for Design Evaluations;963
37.2.1;29.2.1 Uses of Probabilistic Risk Assessment;963
37.2.2;29.2.2 Reference Mission;965
37.3;29.3 Relative Risk Evaluations;967
37.3.1;29.3.1 Absolute Versus Relative Risk Assessments;968
37.3.2;29.3.2 Roles of Relative Risk Assessments in Design Evaluations;969
37.3.3;29.3.3 Quantitative Evaluations;971
37.4;29.4 Evaluations of the Relative Risks of Alternative Designs;973
37.4.1;29.4.1 Overview of Probabilistic Risk Assessment Models Developed;973
37.4.2;29.4.2 Relative Risk Comparisons of the Alternative Designs;974
37.5;References;980
38;Index;982




