Nawrat / Bereska / Jedrasiak | Advanced Technologies in Practical Applications for National Security | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 106, 361 Seiten

Reihe: Studies in Systems, Decision and Control

Nawrat / Bereska / Jedrasiak Advanced Technologies in Practical Applications for National Security


1. Auflage 2018
ISBN: 978-3-319-64674-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 106, 361 Seiten

Reihe: Studies in Systems, Decision and Control

ISBN: 978-3-319-64674-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents advanced technologies used in practice to enable early recognition and tracking of various threats to national security. It discusses practical applications, examples and recent challenges in the application fields using sophisticated sensory devices, embedded designs and airborne and ground unmanned vehicles. Undeniably rapid advances in the development of sophisticated sensory devices, significant increases of computing power available to embedded designs and the development of airborne and ground unmanned vehicles offer almost unlimited possibilities for fighting various types of pathologies affecting our societies. The book provides scientists, researchers, engineers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and integrated circuit (IC) with numerous valuable, useful and practical suggestions and solutions.

Nawrat / Bereska / Jedrasiak Advanced Technologies in Practical Applications for National Security jetzt bestellen!

Weitere Infos & Material


1;Preface;7
2;Acknowledgements;9
3;Contents;10
4;Practical Applications of Object Tracking Algorithms;13
5;Accurate Tracking of Fast Objects with a Weak Video Input Signal;15
5.1;1 Introduction;15
5.2;2 The Main Algorithm;18
5.2.1;2.1 Correction of Radial Distortion;19
5.2.2;2.2 Motion Mask;20
5.2.3;2.3 Computation of Deviation from Background;21
5.2.4;2.4 Blur;21
5.2.5;2.5 Thresholding;22
5.2.6;2.6 Box-Minimum Filter;23
5.2.7;2.7 Round Mean Sequences;24
5.2.8;2.8 Searching for Best Fitting;25
5.2.9;2.9 Modifications and Final Selection;26
5.2.10;2.10 Stabilization;26
5.2.11;2.11 Distance Limit;26
5.2.12;2.12 Background Model Extraction;27
5.3;3 Results;27
5.3.1;3.1 Tracking Reliability;27
5.3.2;3.2 Robot Tracking;27
5.3.3;3.3 Tracking Accuracy;28
5.3.4;3.4 Straight Line;29
5.3.5;3.5 Direction Estimation;30
5.4;4 Conclusions;31
5.5;References;32
6;Applying Colour Image-Based Indicator for Object Tracking;34
6.1;1 Introduction;34
6.2;2 The Theoretical Basis for the Developed Method;35
6.3;3 Examples;37
6.4;4 Conclusion;42
6.5;References;43
7;3 Image Processing in Thermal Cameras;45
7.1;1 Introduction;45
7.2;2 The General Structure of the Infrared Camera—Algorithms and Methods for Image Processing in Infrared Cameras;46
7.3;3 Basic Thermal Image Processing Algorithms;48
7.4;4 Initial Image Processing—Image Enhancement;50
7.4.1;4.1 Context-Free (Point) Image Processing Methods;50
7.4.2;4.2 Contextual Image Processing;52
7.4.3;4.3 Histogram Modification;54
7.5;5 Detection, Recognition and Object Tracking Algorithms;56
7.5.1;5.1 Object Detection Method;58
7.5.2;5.2 Objects Recognition by Means of Radial Shape Function;60
7.5.3;5.3 Object Tracking Algorithm;63
7.6;6 Conclusion;66
7.7;References;66
8;Nystagmus Detection System;68
8.1;1 Introduction;68
8.2;2 Test Stand;69
8.3;3 myGaze API LabVIEW Tools Palette;70
8.4;4 Using myGaze System for Gaze Tracking;70
8.5;5 Gaze Tracking in Medical Researches;75
8.6;6 Using myGaze System During Optokinetic Stimulation;76
8.7;7 Beats Separation Algorithm;77
8.8;8 Fundamental OKN Nystagmus Signal Factors;79
8.9;9 Safety Aspect;81
8.10;10 Conclusion;81
8.11;References;81
9;Weighted Pattern Vector for Object Tracking with the Use of Thermal Images;83
9.1;1 Introduction;83
9.2;2 The Method of Determining the Values of Weights for the Visual and Thermal Parts of the Features Vector;84
9.3;3 Examples;84
9.4;4 Conclusions;91
9.5;References;91
10;Pixel Classification for Skin Detection in Color Images;94
10.1;1 Introduction;94
10.2;2 Data Description;95
10.3;3 Description of Algorithms;95
10.3.1;3.1 Logistic Regression with Regularization;95
10.3.2;3.2 Artificial Neural Network Model with Regularization;96
10.4;4 Error Model Evaluation;97
10.4.1;4.1 Learning Curves;98
10.4.2;4.2 Tuning of Regularized Logistic Regression Model;98
10.4.3;4.3 Tuning of Artificial Neural Network Model;100
10.5;5 Results;102
10.6;6 Conclusions;104
10.7;References;105
11;Design of Control Algorithms for Unmanned Mobile Robots;107
12;Combining Data from Vision and Odometry Systems for More Accurate Control of Mobile Robot;109
12.1;1 Introduction;109
12.2;2 Odometry;111
12.2.1;2.1 Results of Position Estimation;113
12.3;3 Combining Data from both Positioning Systems;114
12.3.1;3.1 Implemented Solution;114
12.4;4 Wheels' Speed Controller;119
12.4.1;4.1 Noise Filtering;121
12.4.2;4.2 Windup Protection;122
12.5;5 Acceleration Control;123
12.5.1;5.1 Acceleration Limiting;126
12.5.2;5.2 Turning Radius Control;131
12.6;6 Rotation by Given Angle;132
12.7;7 Moving by Given Distance;134
12.8;8 Reaching Given Destination Point;134
12.9;9 Conclusions;136
12.10;References;137
13;8 Hierarchical Game Approach to Solve Conflicts in Multiagent Systems;140
13.1;1 Introduction;140
13.2;2 Problem Definition—Assumptions;141
13.2.1;2.1 STRIPS System;142
13.2.2;2.2 STRIPS System for Planning Problem for the Environment with Many Agents as a Problem Inverse to the World of Block with Ambiguous Initial Situation;143
13.3;3 The Solution of the Conflict with Use of Non-cooperative Equilibrium;144
13.3.1;3.1 Non-cooperative Equilibrium in Pure Strategies;145
13.3.2;3.2 The Method of Solving the Problem;145
13.4;4 Conclusions;148
13.5;References;149
14;Suppressing Disturbances in the UAV's Control System Based on the Modified BLT Method;151
14.1;1 Introduction;151
14.2;2 The Linear Multivariable Model for the UAV Taking into Account Disturbances;151
14.3;3 Modified BLT Method for the Control System with Disturbances;153
14.4;4 An Example of the Suppression of Disturbances in the UAV's Control System;154
14.5;5 Conclusions;159
14.6;References;160
15;10 The Airspeed Automatic Control Algorithm for Small Aircraft;161
15.1;1 Introduction;161
15.2;2 The Plant;162
15.3;3 The Control Algorithm;163
15.4;4 The Implementation Case;169
15.5;5 Summary;171
15.6;References;172
16;11 UAV Swarm Management Using Prepar3D;173
16.1;1 Introduction;173
16.2;2 System Architecture;174
16.2.1;2.1 Agent;174
16.2.2;2.2 Server;175
16.2.3;2.3 GUI Application;178
16.3;3 Tests and Results;179
16.3.1;3.1 Single Object;179
16.3.2;3.2 Multiple Objects;181
16.3.3;3.3 The Impact of the Number of Objects and Their Initial Positions;184
16.3.4;3.4 Research on the Influence of Area’s Shape;187
16.3.5;3.5 Research on the Influence of Multiple UAVs Participation;192
16.3.6;3.6 Impact of the Loss of Communication with UAV;192
16.4;4 Conclusions;194
16.5;References;195
17;Computer Models and Simulations;197
18;12 Advanced Ballistic Model and Its Experimental Evaluation for Professional Simulation Systems;198
18.1;1 Introduction;198
18.2;2 External Ballistics;201
18.2.1;2.1 External Forces Acting on an Object;202
18.2.1.1;2.1.1 Gravity Force;202
18.2.1.2;2.1.2 Aerodynamic Drag;202
18.2.1.3;2.1.3 Wind Force;203
18.2.1.4;2.1.4 Coriolis Effect;203
18.2.1.5;2.1.5 Magnus Effect;204
18.2.1.6;2.1.6 Gyroscope Drift;204
18.2.1.7;2.1.7 Summary;204
18.3;3 Mathematical Model of Projectile Motion;205
18.3.1;3.1 Coordinate Systems;205
18.3.2;3.2 Fixed Coordinate System Related to Earth;205
18.3.3;3.3 Coordinate System Related to Trajectory;206
18.3.4;3.4 Mathematical Model of Atmosphere;206
18.3.5;3.5 Mathematical Model of Projectile Motion;208
18.4;4 Implementation of Mathematical Model of Projectile Motion in the Matlab Simulation Environment;212
18.4.1;4.1 Selection of Calculation Step;213
18.4.2;4.2 Implementation of Aerodynamic Drag Model;214
18.4.3;4.3 Implementation of Wind Force Model;215
18.4.4;4.4 Implementation of Coriolis Force;216
18.4.5;4.5 Comparison of Effects Affecting the Projectile Motion;219
18.5;5 Simulation Verification;220
18.5.1;5.1 Trajectory Verification for Lapua Magnum 0.338 Naturalis;222
18.5.2;5.2 Trajectory Verification for Federal American Eagle Ammunition 0.308 Winchester;223
18.5.3;5.3 Trajectory Verification for 0.50 BMG M33;224
18.5.4;5.4 Trajectory Verification for American Eagle 9 × 19 mm Parabellum;225
18.5.5;5.5 Verification Summary;227
18.6;6 Conclusions;229
18.7;References;230
19;13 Manual Calibration of System of the Image Projection Based on DLP Projectors;232
19.1;1 Introduction;232
19.2;2 Manual Geometric and Photometric Calibration;233
19.2.1;2.1 Texture Mapping;235
19.2.2;2.2 Image Blending;236
19.2.3;2.3 Scaling Colour Manually;237
19.3;3 Tests;237
19.3.1;3.1 Texture Mapping in the Virtual and the Real Environment;237
19.3.2;3.2 Blending in Real Application;239
19.4;4 Summary;240
19.5;References;240
20;The Mathematical Model of the Human Arm;243
20.1;1 Introduction;243
20.2;2 The Synthesis of a Mathematical Model of the Human Arm;244
20.2.1;2.1 Kinematics;244
20.2.2;2.2 Dynamics;247
20.2.3;2.3 Non Linear Model of Arm;249
20.2.4;2.4 Linear Model of the Arm;249
20.3;3 2link-3DoF Arm Model;251
20.4;4 Kinematics;251
20.5;5 Dynamics;254
20.6;6 Non Linear Model of Arm;257
20.7;7 Linear Model of Arm;257
20.8;8 Results of the Simulation;259
20.9;9 Summary;267
20.10;References;267
21;15 Interactive Application Using Augmented Reality and Photogrammetric Scanning;269
21.1;1 Introduction;269
21.2;2 Existing Solutions;271
21.3;3 Photogrammetry Scanning;276
21.3.1;3.1 Stereovision as a Method of 3D Reconstruction;276
21.3.2;3.2 System Architecture;281
21.3.3;3.3 Application Goal;283
21.4;4 Tests;284
21.5;5 Conclusions;290
21.6;References;291
22;Experimental Investigation of Dynamic Characteristics;293
23;16 Proving Ground Tests of Selected Energy Absorbing Structure Variants Under a Shock Wave Load;295
23.1;1 Introduction;295
23.2;2 Threats to an Armoured Vehicle’s Crew During an IED Explosion;296
23.3;3 Origin of Using Energy-Absorbing Panels;297
23.4;4 Assumptions, Conception and Aim of Shock Wave Effect Proving Ground Tests;297
23.5;5 Description of the Test Rig and Study Methodology;298
23.6;6 Protective Panel Description;300
23.7;7 Study Results;300
23.8;8 Study Result Analysis and Conclusions;307
23.9;Acknowledgements;311
23.10;References;312
24;17 Temperature Correction of Measurements Results of 3-Axis Accelerometers in IMU Modules;313
24.1;1 Introduction;313
24.2;2 Temperature Correction of Acceleration Measurement;316
24.3;3 Approximation of the Temperature Characteristics by Polynomial Functions;316
24.4;4 Results and Discussion;320
24.5;5 Summary and Conclusions;320
24.6;Acknowledgements;321
24.7;References;321
25;18 Experimental Investigation of IED Interrogation Arm During Normal Operation and Mine Flail Structure Subjected to Blast Loading;322
25.1;1 Introduction;322
25.2;2 Goal of the Experiments;324
25.3;3 Experimental Tests;326
25.4;4 Anti-mine Vehicle Experimental Research;328
25.5;5 Experimental Results;330
25.6;6 Conclusions;335
25.7;References;335
26;Indoor Navigation with Micro Inertial Navigation Technology;337
26.1;1 Introduction;337
26.2;2 Literature Review;338
26.3;3 Indoor Navigation Algorithm;339
26.4;4 Results and Conclusions;342
26.5;References;344
27;20 The Concept of RFID-Based Positioning System for Operational Use;347
27.1;1 Introduction;347
27.2;2 System Architecture;351
27.3;3 Conclusions;358
27.4;References;358
28;About the Book;360
29;Author Index;361



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.