Neeb / Pianzola | Developments and Trends in Infinite-Dimensional Lie Theory | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 288, 492 Seiten

Reihe: Progress in Mathematics

Neeb / Pianzola Developments and Trends in Infinite-Dimensional Lie Theory


2011
ISBN: 978-0-8176-4741-4
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 288, 492 Seiten

Reihe: Progress in Mathematics

ISBN: 978-0-8176-4741-4
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups.Contributors: B. Allison, D. Beltita, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.

Neeb / Pianzola Developments and Trends in Infinite-Dimensional Lie Theory jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Part A Infinite-Dimensional Lie (Super-)Algebras;10
3.1;Isotopy for Extended Affine Lie Algebras and Lie Tori;11
3.1.1;1 Introduction;11
3.1.2;2 Extended affine Lie algebras;13
3.1.3;3 Lie tori;14
3.1.4;4 The construction of EALAs from Lie tori;18
3.1.5;5 Isotopy for Lie tori;21
3.1.6;6 Isotopy in the theory of EALAs;22
3.1.7;7 Coordinatization of Lie tori;30
3.1.8;8 Type A1;32
3.1.9;9 Type A2;36
3.1.10;10 Type Ar, r = 3;40
3.1.11;11 Type Cr, r = 4;42
3.1.12;12 Some concluding remarks;48
3.1.13;References;49
3.2;Remarks on the Isotriviality of Multiloop Algebras;52
3.2.1;1 Introduction;52
3.2.1.1;1.1 Notation and conventions;53
3.2.1.2;1.2 Rn-torsors under finite constant groups;54
3.2.2;2 Bounds on the isotriviality of multiloop algebras;55
3.2.3;References;58
3.3;Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras – A Survey;59
3.3.1;1 Introduction;59
3.3.2;2 Root systems and other types of reflection systems;64
3.3.3;3 Affine reflection systems;74
3.3.4;4 Graded algebras;82
3.3.5;5 Lie algebras graded by root systems;94
3.3.6;6 Extended affine Lie algebras and generalizations;102
3.3.7;7 Example: slI(A) for A associative;118
3.3.8;References;128
3.4;Tensor Representations of Classical Locally Finite Lie Algebras;133
3.4.1;Introduction;133
3.4.2;1 Preliminaries;134
3.4.3;2 Tensor representations of gl8 and sl8;136
3.4.4;3 Tensor representations of sp8;143
3.4.5;4 Tensor representations of so8;146
3.4.6;5 Tensor representations of root-reductive Lie algebras;150
3.4.7;6 Appendix;151
3.4.8;References;155
3.5;Lie Algebras, Vertex Algebras, and Automorphic Forms;157
3.5.1;1 Introduction;157
3.5.2;2 Generalized Kac–Moody algebras;158
3.5.3;3 Vertex algebras;161
3.5.4;4 Automorphic forms on orthogonal groups;163
3.5.5;5 Moonshine for Conway’s group;166
3.5.6;7 Construction as strings;171
3.5.7;8 Open problems;172
3.5.8;References;173
3.6;Kac–Moody Superalgebras and Integrability;175
3.6.1;1 Introduction;175
3.6.2;2 Basic definitions;177
3.6.3;3 Odd reflections, Weyl groupoid, and principal roots;180
3.6.4;4 Kac–Moody superalgebras;185
3.6.5;5 Regular Kac–Moody superalgebras with two simple roots;188
3.6.6;6 Examples of regular quasisimple superalgebras;188
3.6.7;7 Classification results;194
3.6.8;8 Applications of classification results;195
3.6.9;9 Description of g (B) and g' in examples;197
3.6.10;10 Integrable modules and highest weight modules;200
3.6.11;11 General properties of category O;205
3.6.12;12 Lie superalgebras sl (1|n)(1), osp(2|2n)(1), andS (1, 2; b);208
3.6.13;13 Lie superalgebras sl (1|n)(1), osp(2|2n)(1);214
3.6.14;14 On affine character formulae;217
3.6.15;References;224
4;Part B Geometry of Infinite-Dimensional Lie (Transformation) Groups;225
4.1;Jordan Structures and Non-Associative Geometry;226
4.1.1;Introduction;226
4.1.2;1 Jordan pairs and graded Lie algebras;229
4.1.2.1;1.1 Z/(2)-graded Lie algebras and Lie triple systems;229
4.1.2.2;1.2 3-graded Lie algebras and Jordan pairs;230
4.1.2.3;1.3 Involutive Z-graded Lie algebras;231
4.1.2.4;1.4 The link with Jordan algebras;232
4.1.2.5;1.5 Some examples;233
4.1.3;2 The generalized projective geometry of a Jordan pair;234
4.1.3.1;2.1 The construction;234
4.1.3.2;2.2 Generalized projective geometries;235
4.1.3.3;2.3 The geometric Jordan–Lie functor;237
4.1.3.4;2.4 Examples revisited;238
4.1.4;3 The universal model;240
4.1.4.1;3.1 Ordinary flag geometries;240
4.1.4.2;3.2 Filtrations and gradings of Lie algebras;241
4.1.5;4 The geometry of states;242
4.1.5.1;4.1 Intrinsic subspaces;242
4.1.5.2;4.2 Examples;244
4.1.5.3;References;245
4.2;Direct Limits of Infinite-Dimensional Lie Groups;247
4.2.1;1 Introduction;247
4.2.1.1;1.1 Direct limit properties of ascending unions;249
4.2.1.2;1.2 Existence of direct limit charts: an essential hypothesis;249
4.2.1.3;1.3 Homotopy groups of ascending unions of Lie groups;250
4.2.1.4;1.4 Regularity in Milnor’s sense;251
4.2.1.5;1.5 Subgroups of direct limit groups;252
4.2.1.6;1.6 Constructions of Lie group structures on ascending unions;252
4.2.1.7;1.7 Properties of locally convex direct limits;252
4.2.1.8;1.8 Further comments, and some historical remarks;253
4.2.2;2 Preliminaries, terminology and basic facts;255
4.2.3;3 Direct limits of topological groups;259
4.2.4;4 Non-linear mappings on locally convex direct limits;262
4.2.5;5 Lie group structures on directed unions of Lie groups;266
4.2.6;6 Examples of directed unions of Lie groups;269
4.2.7;7 Direct limit properties of ascending unions;272
4.2.8;8 Regularity in Milnor’s sense;273
4.2.9;9 Homotopy groups of ascending unions of Lie groups;276
4.2.10;References;279
4.3;Lie Groups of Bundle Automorphisms and Their Extensions;285
4.3.1;Introduction;285
4.3.1.1;Notation and basic concepts;289
4.3.2;1 Lie group structures on mapping groups and automorphism groups of bundles;290
4.3.2.1;1.1 Automorphism groups of bundles;290
4.3.2.2;1.2 Mapping groups on non-compact manifolds;292
4.3.3;2 Central extensions of mapping groups;293
4.3.3.1;2.1 Central extensions of C8(M, t);294
4.3.3.2;2.2 Covariance of the Lie algebra cocycles;298
4.3.3.3;2.3 Corresponding Lie group extensions;301
4.3.4;3 Twists and the cohomology of vector fields;305
4.3.4.1;3.1 Some cohomology of the Lie algebra of vector fields;306
4.3.4.2;3.2 Abelian extensions of diffeomorphism groups;310
4.3.5;4 Central extensions of gauge groups;318
4.3.5.1;4.1 Central extensions of gau(P);318
4.3.5.2;4.2 Covariance of the Lie algebra cocycles;321
4.3.5.3;4.3 Corresponding Lie group extensions;324
4.3.6;5 Multiloop algebras;327
4.3.6.1;5.1 The algebraic picture;327
4.3.6.2;5.2 Geometric realization of multiloop algebras;328
4.3.6.3;5.3 A generalization of multiloop algebras;329
4.3.6.4;5.4 Connections to forms of Lie algebras over rings;330
4.3.7;6 Concluding remarks;331
4.3.8;7 Appendix A. Abelian extensions of Lie groups;332
4.3.9;8 Appendix B. Abelian extensions of semidirect sums;335
4.3.10;9 Appendix C. Triviality of the group action on Lie algebra cohomology;338
4.3.11;References;339
4.4;Gerbes and Lie Groups;343
4.4.1;Introduction;343
4.4.2;1 Bundle gerbes;344
4.4.3;2 Connections on bundle gerbes and holonomy;348
4.4.4;3 Bundle gerbes over compact Lie groups;353
4.4.5;4 Structure on loop spaces from bundle gerbes;359
4.4.6;5 Algebraic structures for gerbes;361
4.4.6.1;5.1 Bundle gerbe modules;361
4.4.6.2;5.2 Bundle Gerbe bimodules;362
4.4.7;6 Applications to conformal field theory;365
4.4.8;7 Open questions;366
4.4.9;References;367
5;Part C Representation Theory of Infinite-Dimensional Lie Groups;369
5.1;Functional Analytic Background for a Theory of Infinite-Dimensional Reductive Lie Groups;370
5.1.1;1 Introduction: What a reductive Lie group is supposed to be;370
5.1.2;2 Triangular integrals and factorizations;372
5.1.3;3 Invariant means on groups;378
5.1.4;4 Lifting group decompositions to covering groups;383
5.1.5;5 What a reductive Banach–Lie group could be;387
5.1.6;References;393
5.2;Heat Kernel Measures and Critical Limits;396
5.2.1;1 Introduction;396
5.2.2;2 General constructions;400
5.2.2.1;2.1 Abstract Wiener spaces and Gaussian measures;400
5.2.2.2;2.2 Abstract Wiener groups and heat kernel measures;402
5.2.3;3 Invariance questions;404
5.2.4;4 The Example of Map(X, F) (see [M]);405
5.2.5;5 The critical Sobolev exponent and X = S1;408
5.2.6;6 2D quantum field theory;414
5.2.7;References;417
5.3;Coadjoint Orbits and the Beginnings of a Geometric Representation Theory;419
5.3.1;1 Introduction;419
5.3.2;2 Banach Poisson manifolds;421
5.3.2.1;2.1 The definition;421
5.3.2.2;2.2 Banach symplectic manifolds;422
5.3.3;3 Banach–Lie–Poisson spaces;423
5.3.3.1;3.1 Characterization;423
5.3.3.2;3.2 Examples;424
5.3.4;4 Symplectic leaves;426
5.3.4.1;4.1 Attempt at constructing symplectic leaves;427
5.3.4.2;4.2 Coadjoint orbits in Banach–Lie–Poisson spaces;429
5.3.5;5 Coadjoint orbits in operator spaces;431
5.3.5.1;5.1 Symplectic leaves in preduals of W*-algebras;432
5.3.5.2;5.2 Symplectic leaves in C*-algebras;434
5.3.5.3;5.3 Symplectic leaves in preduals of operator ideals;435
5.3.5.4;5.4 The restricted unitary algebra and its central extension;437
5.3.5.5;5.5 The restricted Grassmannian;443
5.3.5.6;5.6 Hilbert–Schmidt skew-Hermitian operators;444
5.3.6;6 Geometric representation theory;446
5.3.6.1;6.1 GNS unital *-representation;446
5.3.6.2;6.2 The fundamental construction;447
5.3.6.3;6.3 Reproducing kernels;448
5.3.6.4;6.4 Reproducing kernels and GNS-representations;449
5.3.6.5;6.5 Example;451
5.3.6.6;References;453
5.4;Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces;460
5.4.1;1 Introduction;460
5.4.2;2 Direct limit groups and representations;462
5.4.3;3 Limit theorem for symmetric spaces;463
5.4.4;4 Gelfand pairs and defining representations;469
5.4.5;5 Function algebras;471
5.4.6;6 Pairs related to spheres and Grassmann manifolds;474
5.4.7;7 Limits related to spheres and Grassmann manifolds;477
5.4.8;8 Conclusions;480
5.4.9;References;482
6;Index;483



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.