Neumaier / Westra | Quantum Mechanics via Lie Algebras | E-Book | sack.de
E-Book

E-Book, Englisch, Band 55, 504 Seiten

Reihe: De Gruyter Studies in Mathematical PhysicsISSN

Neumaier / Westra Quantum Mechanics via Lie Algebras


1. Auflage 2024
ISBN: 978-3-11-040624-5
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band 55, 504 Seiten

Reihe: De Gruyter Studies in Mathematical PhysicsISSN

ISBN: 978-3-11-040624-5
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This monograph introduces mathematicians, physicists, and engineers to the ideas relating quantum mechanics and symmetries - both described in terms of Lie algebras and Lie groups. The exposition of quantum mechanics from this point of view reveals that classical mechanics and quantum mechanics are very much alike. Written by a mathematician and a physicist, this book is (like a math book) about precise concepts and exact results in classical mechanics and quantum mechanics, but motivated and discussed (like a physics book) in terms of their physical meaning. The reader can focus on the simplicity and beauty of theoretical physics, without getting lost in a jungle of techniques for estimating or calculating quantities of interest.

Neumaier / Westra Quantum Mechanics via Lie Algebras jetzt bestellen!

Zielgruppe


Mathematicians and theoretical and mathematical physicists.

Weitere Infos & Material


Preface I An invitation to quantum mechanics
1 Motivation
1.1 Classical mechanics
1.2 Relativity theory
1.3 Statistical mechanics and thermodynamics
1.4 Hamiltonian mechanics
1.5 Quantum mechanics
1.6 Quantum field theory
1.7 The Schrödinger picture
1.8 The Heisenberg picture
1.9 Outline of the book
2 The simplest quantum system
2.1 Matrices, relativity and quantum theory
2.2 Continuous motions and matrix groups
2.3 Infinitesimal motions and matrix Lie algebras
2.4 Uniform motions and the matrix exponential
2.5 Volume preservation and special linear groups
2.6 The vector product, quaternions, and SL(2,C)
2.7 The Hamiltonian form of a Lie algebra

2.8 Atomic energy levels and unitary groups

2.9 Qubits and Bloch sphere

2.10 Polarized light and beam transformations

2.11 Spin and spin coherent states

2.12 Particles and detection probabilities

2.13 Photons on demand

2.14 Unitary representations of SU(2)

3 The symmetries of the universe

3.1 Rotations and SO(n)

3.2 3-dimensional rotations and SO(3)

3.3 Rotations and quaternions

3.4 Rotations and SU(2)

3.5 Angular velocity

3.6 Rigid motions and Euclidean groups

3.7 Connected subgroups of SL(2,R)

3.8 Connected subgroups of SL(3,R)

3.9 Classical mechanics and Heisenberg groups

3.10 Angular momentum, isospin, quarks

3.11 Connected subgroups of SL(4,R)

3.12 The Galilean group

3.13 The Lorentz groups O(1, 3), SO(1, 3), SO(1, 3)0

3.14 The Poincare group ISO(1, 3)

3.15 A Lorentz invariant measure

3.16 Kepler's laws, the hydrogen atom, and SO(4)

3.17 The periodic systemand the conformal group SO(2, 4)

3.18 The interacting boson model and U(6)

3.19 Casimirs

3.20 Unitary representations of the Poincaré group

3.21 Some representations of the Poincaré group

3.22 Elementary particles

3.23 The position operator

4 From the theoretical physics FAQ

4.1 To be done

4.2 Postulates for the formal core of quantum mechanics

4.3 Lie groups and Lie algebras

4.4 The Galilei group as contraction of the Poincare group

4.5 Representations of the Poincare group

4.6 Forms of relativistic dynamics

4.7 Is there a multiparticle relativistic quantum mechanics?

4.8 What is a photon?

4.9 Particle positions and the position operator

4.10 Localization and position operators

4.11 SO(3) = SU(2)/Z2

5 Classical oscillating systems

5.1 Systems of damped oscillators

5.2 The classical anharmonic oscillator

5.3 Harmonic oscillators and linear field equations

5.4 Alpha rays

5.5 Beta rays

5.6 Light rays and gamma rays

6 Spectral analysis

6.1 The quantum spectrum

6.2 Probing the spectrum of a system

6.3 The early history of quantum mechanics

6.4 The spectrum of many-particle systems

6.5 Black body radiation
6.6 Derivation of Planckés law
6.7 Stefan´s law and Wien´s displacement law II Statistical mechanics
7 Phenomenological thermodynamics

7.1 Standard thermodynamical systems

7.2 The laws of thermodynamics

7.3 Consequences of the first law

7.4 Consequences of the second law

7.5 The approach to equilibrium

7.6 Description levels

8 Quantities, states, and statistics

8.1 Quantities

8.2 Gibbs states

8.3 Kubo product and generating functional

8.4 Limit resolution and uncertainty

9 The laws of thermodynamics

9.1 The zeroth law: Thermal states

9.2 The equation of state

9.3 The first law: Energy balance

9.4 The second law: Extremal principles

9.5 The third law: Quantization

10 Models, statistics, and measurements

10.1 Description levels

10.2 Local, microlocal, and quantum equilibrium

10.3 Statistics and probability

10.4 Classical measurements

10.5 Quantum probability

10.6 Entropy and information theory

10.7 Subjective probability III Lie algebras and Poisson algebras
11 Lie algebras
11.1 Basic definitions

11.2 Lie algebras from derivations

11.3 Linear groups and their Lie algebras

11.4 Classical Lie groups and their Lie algebras

11.5 Heisenberg algebras and Heisenberg groups

11.6 Lie-algebras

12 Mechanics in Poisson algebras

12.1 Poisson algebras

12.2 Rotating rigid bodies

12.3 Rotations and angular momentum

12.4 Classical rigid body dynamics

12.5 Lie-Poisson algebras

12.6 Classical symplectic mechanics

12.7 Molecular mechanics

12.8 An outlook to quantum field theory

13 Representation and classification

13.1 Poisson representations

13.2 Linear representations

13.3 Finite-dimensional representations

13.4 Representations of Lie groups

13.5 Finite-dimensional semisimple Lie algebras

13.6 Automorphisms and coadjoint orbits IV Nonequilibrium thermodynamics

14 Markov Processes

14.1 Activities

14.2 Processes

14.3 Forward morphisms and quantum dynamical semigroups

14.4 Forward derivations

14.5 Single-time, autonomous Markov processes

15 Diffusion processes

15.1 Stochastic differential equations

15.2 Closed diffusion processes

15.3 Ornstein-Uhlenbeck processes

15.4 Linear processes with memory

15.5 Dissipative Hamiltonian Systems

16 Collective Processes

16.1 The master equation

16.2 Canonical form and thermodynamic limit

16.3 Stirred chemical reactions

16.4 Linear response theory

16.5 Open system

16.6 Some philosophical afterthoughts

V Mechanics and differential geometry

17 Fields, forms, and derivatives

17.1 Scalar fields and vector fields

17.2 Multilinear forms

17.3 Exterior calculus

17.4 Manifolds as differential geometries

17.5 Manifolds as topological spaces

17.6 Noncommutative geometry

17.7 Lie groups as manifolds

18 Conservative mechanics on manifolds

18.1 Poisson algebras from closed 2-forms

18.2 Conservative Hamiltonian dynamics

18.3 Constrained Hamiltonian dynamics

18.4 Lagrangian mechanics

19 Hamiltonian quantum mechanics
19.1 Quantum dynamics as symplectic motion

19.2 Quantum-classical dynamics

19.3 Deformation quantization
19.4 The Wigner transform VI Representations and spectroscopy
20 Harmonic oscillators and coherent states
20.1 The classical harmonic oscillator
20.2 Quantizing the harmonic oscillator
20.3 Representations of the Heisenberg algebra

20.4 Bras and Kets
20.5 Boson Fock space
20.6 Bargmann.Fock representation
20.7 Coherent states for the harmonic oscillator

20.8 Monochromatic beams and coherent states

21 Spin and fermions

21.1 Fermion Fock space

21.2 Extension to many degrees of freedom

21.3 Exterior algebra representation

21.4 Spin and metaplectic representation

22 Highest weight representations

22.1 Triangular decompositions

22.2 Triangulated Lie algebras of rank and degree one

22.3 Unitary representations of SU(2) and SO(3)

22.4 Some unitary highest weight representations

23 Spectroscopy and spectra

23.1 Introduction and historical background

23.2 Spectra of systems of particles

23.3 Examples of spectra
23.4 Dynamical symmetries
23.5 The hydrogen atom
23.6 Chains of subalgebras References


Arnold Neumaier and Dennis Westra, University of Vienna, Austria.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.