E-Book, Englisch, Band 70, 332 Seiten
Oliveira / Lima / Thirstrup Surface Plasmon Resonance Sensors
2. Auflage 2019
ISBN: 978-3-030-17486-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Materials Guide to Design, Characterization, Optimization, and Usage
E-Book, Englisch, Band 70, 332 Seiten
Reihe: Springer Series in Surface Sciences
ISBN: 978-3-030-17486-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's. Finally, this treatise includes as-yet hardly explored SPR features of selected metal-metal and metal-dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.
Leiva Casemiro Oliveira is a computer scientist, who received a Ph.D. in electrical engineering at UFCG-Brazil in 2016. He is an advanced researcher on SPR technology in Brazil.
Antonio Marcus N. Lima is an electrical engineer, who received his doctoral degree from INPT-Toulouse in 1989. He is a renowned researcher in the field of electrical engineering in Brazil.
Carsten Thistrup received his Ph.D. in 1991 at the Technical University of Denmark; he co-founded the company Vir Biosensor. Helmut Neff was a physicist, who received his Ph.D. degree from TU-Berlin in 1981. He held positions at several researcher centers around the world.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Acknowledgements;9
3;Contents;10
4;1 Introduction and Background Information;14
4.1;References;21
5;2 Physical Features of the Surface Plasmon Polariton;23
5.1;2.1 Physical Features of Surface Plasmon Resonance Sensors;26
5.2;2.2 Radiative Surface Plasmon Resonance;28
5.2.1;2.2.1 Radiative SP-Decay: Emission into the Lower Half-Space;30
5.2.2;2.2.2 Radiative SP-Decay: Emission into the Upper Half-Space;31
5.3;References;32
6;3 Design Features of Surface Plasmon Resonance Sensors;34
6.1;3.1 Propagating Surface Plasmons;34
6.2;3.2 Localized SP's;39
6.3;References;41
7;4 Modeling and Data Processing;42
7.1;4.1 Multilayer Fresnel Analysis;42
7.2;4.2 Long Range Surface Plasmon Polaritons;44
7.3;4.3 Localized Surface Plasmon Resonance in Small Particles;45
7.4;4.4 Finite Element Method (FEM);46
7.5;4.5 Data Processing;47
7.6;References;58
8;5 Sensor Properties of Metal Films and Particles: Free Electron Type Metals;60
8.1;5.1 Thin Aluminum Films and Colloidal Particles;60
8.1.1;5.1.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);63
8.1.2;5.1.2 Surface Plasmon Resonance at Al-Air Interface;65
8.1.3;5.1.3 Localized Plasmons in Colloidal Al-Particles (LSPR-Mode);67
8.1.4;5.1.4 Experimental Results for Aluminum/Water Interface;68
8.2;5.2 Thin Lithium (Li) Films;72
8.3;5.3 Thin Magnesium (Mg) Films;79
8.4;References;84
9;6 Classical Noble Metals;85
9.1;6.1 Thin Copper (Cu) Films and Colloidal Particles;85
9.1.1;6.1.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);89
9.1.2;6.1.2 Surface Plasmon Resonance at Cu-Air Interface;89
9.1.3;6.1.3 Localized Plasmons in Colloidal Cu-Particles (LSPR-Mode);92
9.1.4;6.1.4 Experimental Results for Copper/Water Interface;94
9.2;6.2 Thin Gold (Au) Films and Colloidal Particles;95
9.2.1;6.2.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);99
9.2.2;6.2.2 Au-SPR Response for Nonlinear Materials at Water Interface;101
9.2.3;6.2.3 Surface Plasmon Resonance at Au-Graphene-Water Interface;102
9.2.4;6.2.4 Surface Plasmon Resonance at Au-Air Interface;103
9.2.5;6.2.5 Localized Plasmons in Colloidal Au-Particles (LSPR-Mode);104
9.2.6;6.2.6 Experimental Results for Gold/Water Interface;105
9.3;6.3 Thin Silver (Ag) Films and Colloidal Particles;109
9.3.1;6.3.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);113
9.3.2;6.3.2 Surface Plasmon Resonance at Ag-Air Interface;113
9.3.3;6.3.3 Localized Plasmons in Colloidal Ag-Particles (LSPR-Mode);116
9.3.4;6.3.4 Experimental Results for Silver/Water Interface;117
9.4;References;120
10;7 Noble Transition Metals of the Platinum Group;121
10.1;7.1 Thin Iridium (Ir) Films and Colloidal Particles;121
10.1.1;7.1.1 Surface Plasmon Resonance at Ir-Air Interface;125
10.1.2;7.1.2 Localized Plasmon in Colloidal Ir-Particles (LSPR-Mode);127
10.2;7.2 Thin Osmium (Os) Films and Colloidal Particles;127
10.2.1;7.2.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);133
10.2.2;7.2.2 Surface Plasmon Resonance at Os-Air Interface;134
10.2.3;7.2.3 Properties of Localized Plasmons in Os-Colloidal Particles;136
10.3;7.3 Thin Palladium (Pd) Films;137
10.4;7.4 Thin Platinum (Pt) Films;143
10.4.1;7.4.1 Surface Plasmon Resonance at Pt-Air Interface;146
10.4.2;7.4.2 Properties of Localized Plasmons in Pt-Colloidal Particles;149
10.5;7.5 Thin Rhodium (Rh) Films;151
10.6;7.6 Thin Ruthenium (Ru) Films;154
10.7;References;163
11;8 Common Transition Metals;164
11.1;8.1 Thin Chromium (Cr) Films;164
11.2;8.2 Thin Cobalt (Co) Films;168
11.3;8.3 Thin Iron (Fe) Films;174
11.3.1;8.3.1 Surface Plasmon Resonance at Fe-Air Interface;178
11.3.2;8.3.2 Properties of Localized Plasmons in Colloidal Fe-Particles;178
11.3.3;8.3.3 Magneto-Optical Effect;179
11.4;8.4 Thin Molybdenum (Mo) Films;181
11.5;8.5 Thin Nickel (Ni) Films;188
11.6;8.6 Thin Niobium (Nb) Films;193
11.7;8.7 Thin Tantalum (Ta) Films;198
11.8;8.8 Thin Titanium (Ti) Films;205
11.9;8.9 Thin Tungsten (W) Films;211
11.10;8.10 Thin Vanadium (V) Films;217
11.11;8.11 Thin Zirconium (Zr) Films;224
11.12;References;229
12;9 Other Common Metals;231
12.1;9.1 Thin Indium (In) Films;231
12.1.1;9.1.1 Surface Plasmon Resonance at In-Air Interface;236
12.2;9.2 Thin Tin (Sn) Films;236
12.2.1;9.2.1 Surface Plasmon Resonance at Sn-Air Interface;240
12.3;9.3 Thin Zinc (Zn) Films;242
12.3.1;9.3.1 Surface Plasmon Resonance at Zn-Air Interface;246
12.4;9.4 Thin Lead (Pb) Films;249
12.4.1;9.4.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);253
12.4.2;9.4.2 Surface Plasmon Resonance at Pb-Air Interface;254
12.4.3;9.4.3 Localized Plasmons in Colloidal Pb-Particles (LSPR-Mode);256
12.5;9.5 Thin Bismuth (Bi) Films;257
12.5.1;9.5.1 Surface Plasmon Resonance at Bi-Air Interface;262
12.6;References;264
13;10 Active Metal-Type Compounds;265
13.1;10.1 Thin Indium-Tin-Oxide (ITO) Films;265
13.1.1;10.1.1 Surface Plasmon Resonance at ITO-Air Interface;269
13.2;10.2 Thin Titanium-Nitride (TiN) Films;272
13.2.1;10.2.1 Surface Plasmon Resonance at TiN-Air Interface;276
13.3;References;280
14;11 Heavy Metals;281
14.1;11.1 Thin Cesium (Cs) Films;281
14.2;11.2 Thin Uranium (U) Films;287
14.3;References;291
15;12 Artificial Metal-Insulator Multi-layer Structures;292
15.1;12.1 Silver-Al2O3-Silver Multilayer Structures;292
16;13 Practical Applications;296
16.1;13.1 Construction an SPR System: PPBIO Case Study;296
16.1.1;13.1.1 Calibration of the SPR Sensor;303
16.2;13.2 Dengue Detection;304
16.3;13.3 Leishmaniose Detection;307
16.4;13.4 Biofuel Tampering Detection;309
16.4.1;13.4.1 Tampering Detection with PPBIO SPR Sensor;310
16.4.2;13.4.2 Tampering Detection with PPBIO dc-Sheet Resistance Sensor;311
16.5;13.5 Optical-Fiber Based Sensors;312
16.6;13.6 Grating-Coupled Sensors;316
16.7;References;320
17;14 Conclusions;322
17.1;Reference;326
18; Glossary;327
19;Index;329




