Oliveira / Lima / Thirstrup | Surface Plasmon Resonance Sensors | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 70, 332 Seiten

Reihe: Springer Series in Surface Sciences

Oliveira / Lima / Thirstrup Surface Plasmon Resonance Sensors

A Materials Guide to Design, Characterization, Optimization, and Usage
2. Auflage 2019
ISBN: 978-3-030-17486-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Materials Guide to Design, Characterization, Optimization, and Usage

E-Book, Englisch, Band 70, 332 Seiten

Reihe: Springer Series in Surface Sciences

ISBN: 978-3-030-17486-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's.  Finally, this treatise includes as-yet hardly explored SPR features of selected metal-metal and metal-dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.


Leiva Casemiro Oliveira is a computer scientist, who received a Ph.D. in electrical engineering at UFCG-Brazil in 2016. He is an advanced researcher on SPR technology in Brazil.
Antonio Marcus N. Lima is an electrical engineer, who received his doctoral degree from INPT-Toulouse in 1989. He is a renowned researcher in the field of electrical engineering in Brazil.
Carsten Thistrup received his Ph.D. in 1991 at the Technical University of Denmark; he co-founded the company Vir Biosensor. Helmut Neff was a physicist, who received his Ph.D. degree from TU-Berlin in 1981. He held positions at several researcher centers around the world.

Oliveira / Lima / Thirstrup Surface Plasmon Resonance Sensors jetzt bestellen!

Weitere Infos & Material


1;Preface;7
2;Acknowledgements;9
3;Contents;10
4;1 Introduction and Background Information;14
4.1;References;21
5;2 Physical Features of the Surface Plasmon Polariton;23
5.1;2.1 Physical Features of Surface Plasmon Resonance Sensors;26
5.2;2.2 Radiative Surface Plasmon Resonance;28
5.2.1;2.2.1 Radiative SP-Decay: Emission into the Lower Half-Space;30
5.2.2;2.2.2 Radiative SP-Decay: Emission into the Upper Half-Space;31
5.3;References;32
6;3 Design Features of Surface Plasmon Resonance Sensors;34
6.1;3.1 Propagating Surface Plasmons;34
6.2;3.2 Localized SP's;39
6.3;References;41
7;4 Modeling and Data Processing;42
7.1;4.1 Multilayer Fresnel Analysis;42
7.2;4.2 Long Range Surface Plasmon Polaritons;44
7.3;4.3 Localized Surface Plasmon Resonance in Small Particles;45
7.4;4.4 Finite Element Method (FEM);46
7.5;4.5 Data Processing;47
7.6;References;58
8;5 Sensor Properties of Metal Films and Particles: Free Electron Type Metals;60
8.1;5.1 Thin Aluminum Films and Colloidal Particles;60
8.1.1;5.1.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);63
8.1.2;5.1.2 Surface Plasmon Resonance at Al-Air Interface;65
8.1.3;5.1.3 Localized Plasmons in Colloidal Al-Particles (LSPR-Mode);67
8.1.4;5.1.4 Experimental Results for Aluminum/Water Interface;68
8.2;5.2 Thin Lithium (Li) Films;72
8.3;5.3 Thin Magnesium (Mg) Films;79
8.4;References;84
9;6 Classical Noble Metals;85
9.1;6.1 Thin Copper (Cu) Films and Colloidal Particles;85
9.1.1;6.1.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);89
9.1.2;6.1.2 Surface Plasmon Resonance at Cu-Air Interface;89
9.1.3;6.1.3 Localized Plasmons in Colloidal Cu-Particles (LSPR-Mode);92
9.1.4;6.1.4 Experimental Results for Copper/Water Interface;94
9.2;6.2 Thin Gold (Au) Films and Colloidal Particles;95
9.2.1;6.2.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);99
9.2.2;6.2.2 Au-SPR Response for Nonlinear Materials at Water Interface;101
9.2.3;6.2.3 Surface Plasmon Resonance at Au-Graphene-Water Interface;102
9.2.4;6.2.4 Surface Plasmon Resonance at Au-Air Interface;103
9.2.5;6.2.5 Localized Plasmons in Colloidal Au-Particles (LSPR-Mode);104
9.2.6;6.2.6 Experimental Results for Gold/Water Interface;105
9.3;6.3 Thin Silver (Ag) Films and Colloidal Particles;109
9.3.1;6.3.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);113
9.3.2;6.3.2 Surface Plasmon Resonance at Ag-Air Interface;113
9.3.3;6.3.3 Localized Plasmons in Colloidal Ag-Particles (LSPR-Mode);116
9.3.4;6.3.4 Experimental Results for Silver/Water Interface;117
9.4;References;120
10;7 Noble Transition Metals of the Platinum Group;121
10.1;7.1 Thin Iridium (Ir) Films and Colloidal Particles;121
10.1.1;7.1.1 Surface Plasmon Resonance at Ir-Air Interface;125
10.1.2;7.1.2 Localized Plasmon in Colloidal Ir-Particles (LSPR-Mode);127
10.2;7.2 Thin Osmium (Os) Films and Colloidal Particles;127
10.2.1;7.2.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode);133
10.2.2;7.2.2 Surface Plasmon Resonance at Os-Air Interface;134
10.2.3;7.2.3 Properties of Localized Plasmons in Os-Colloidal Particles;136
10.3;7.3 Thin Palladium (Pd) Films;137
10.4;7.4 Thin Platinum (Pt) Films;143
10.4.1;7.4.1 Surface Plasmon Resonance at Pt-Air Interface;146
10.4.2;7.4.2 Properties of Localized Plasmons in Pt-Colloidal Particles;149
10.5;7.5 Thin Rhodium (Rh) Films;151
10.6;7.6 Thin Ruthenium (Ru) Films;154
10.7;References;163
11;8 Common Transition Metals;164
11.1;8.1 Thin Chromium (Cr) Films;164
11.2;8.2 Thin Cobalt (Co) Films;168
11.3;8.3 Thin Iron (Fe) Films;174
11.3.1;8.3.1 Surface Plasmon Resonance at Fe-Air Interface;178
11.3.2;8.3.2 Properties of Localized Plasmons in Colloidal Fe-Particles;178
11.3.3;8.3.3 Magneto-Optical Effect;179
11.4;8.4 Thin Molybdenum (Mo) Films;181
11.5;8.5 Thin Nickel (Ni) Films;188
11.6;8.6 Thin Niobium (Nb) Films;193
11.7;8.7 Thin Tantalum (Ta) Films;198
11.8;8.8 Thin Titanium (Ti) Films;205
11.9;8.9 Thin Tungsten (W) Films;211
11.10;8.10 Thin Vanadium (V) Films;217
11.11;8.11 Thin Zirconium (Zr) Films;224
11.12;References;229
12;9 Other Common Metals;231
12.1;9.1 Thin Indium (In) Films;231
12.1.1;9.1.1 Surface Plasmon Resonance at In-Air Interface;236
12.2;9.2 Thin Tin (Sn) Films;236
12.2.1;9.2.1 Surface Plasmon Resonance at Sn-Air Interface;240
12.3;9.3 Thin Zinc (Zn) Films;242
12.3.1;9.3.1 Surface Plasmon Resonance at Zn-Air Interface;246
12.4;9.4 Thin Lead (Pb) Films;249
12.4.1;9.4.1 Long Range Surface Plasmon Polariton (LRSPP-Mode);253
12.4.2;9.4.2 Surface Plasmon Resonance at Pb-Air Interface;254
12.4.3;9.4.3 Localized Plasmons in Colloidal Pb-Particles (LSPR-Mode);256
12.5;9.5 Thin Bismuth (Bi) Films;257
12.5.1;9.5.1 Surface Plasmon Resonance at Bi-Air Interface;262
12.6;References;264
13;10 Active Metal-Type Compounds;265
13.1;10.1 Thin Indium-Tin-Oxide (ITO) Films;265
13.1.1;10.1.1 Surface Plasmon Resonance at ITO-Air Interface;269
13.2;10.2 Thin Titanium-Nitride (TiN) Films;272
13.2.1;10.2.1 Surface Plasmon Resonance at TiN-Air Interface;276
13.3;References;280
14;11 Heavy Metals;281
14.1;11.1 Thin Cesium (Cs) Films;281
14.2;11.2 Thin Uranium (U) Films;287
14.3;References;291
15;12 Artificial Metal-Insulator Multi-layer Structures;292
15.1;12.1 Silver-Al2O3-Silver Multilayer Structures;292
16;13 Practical Applications;296
16.1;13.1 Construction an SPR System: PPBIO Case Study;296
16.1.1;13.1.1 Calibration of the SPR Sensor;303
16.2;13.2 Dengue Detection;304
16.3;13.3 Leishmaniose Detection;307
16.4;13.4 Biofuel Tampering Detection;309
16.4.1;13.4.1 Tampering Detection with PPBIO SPR Sensor;310
16.4.2;13.4.2 Tampering Detection with PPBIO dc-Sheet Resistance Sensor;311
16.5;13.5 Optical-Fiber Based Sensors;312
16.6;13.6 Grating-Coupled Sensors;316
16.7;References;320
17;14 Conclusions;322
17.1;Reference;326
18; Glossary;327
19;Index;329



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.