Buch, Englisch, 454 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 960 g
Reihe: ISSN
Buch, Englisch, 454 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 960 g
Reihe: ISSN
ISBN: 978-3-11-015807-6
Verlag: De Gruyter
Zielgruppe
Graduate Students of Mathematics, Researcher, Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Frontmatter
Contents
Preface
Introduction
Part 1. Morse functions and vector fields on manifolds
CHAPTER 1. Vector fields and C0 topology
CHAPTER 2. Morse functions and their gradients
CHAPTER 3. Gradient flows of real-valued Morse functions
Part 2. Transversality, handles, Morse complexes
CHAPTER 4. The Kupka-Smale transversality theory for gradient flows
CHAPTER 5. Handles
CHAPTER 6. The Morse complex of a Morse function
Part 3. Cellular gradients
CHAPTER 7. Condition (C)
CHAPTER 8. Cellular gradients are C0-generic
CHAPTER 9. Properties of cellular gradients
Part 4. Circle-valued Morse maps and Novikov complexes
CHAPTER 10. Completions of rings, modules and complexes
CHAPTER 11. The Novikov complex of a circle-valued Morse map
CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem
CHAPTER 13. Counting closed orbits of the gradient flow
CHAPTER 14. Selected topics in the Morse-Novikov theory
Backmatter