Peinke / Schaumann / Barth | Wind Energy | E-Book | www.sack.de
E-Book

E-Book, Englisch, 340 Seiten

Peinke / Schaumann / Barth Wind Energy

Proceedings of the Euromech Colloquium
1. Auflage 2007
ISBN: 978-3-540-33866-6
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Euromech Colloquium

E-Book, Englisch, 340 Seiten

ISBN: 978-3-540-33866-6
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is comprised of the proceedings of the Euromech Colloquium 464b 'Wind Energy'. It comprises reports on basic research, as well as research related to the practical exploitation and application of wind energy. The book describes the atmospheric turbulent wind condition on different time scales, and the interaction of wind turbines with both wind and water flows. These influence the design, operation and maintenance of offshore wind turbines.

Peinke / Schaumann / Barth Wind Energy jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;List of Contributors;21
4;1 Offshore Wind Power Meteorology;32
4.1;1.1 Introduction;32
4.2;1.2 Offshore Wind Measurements;33
4.3;1.3 Offshore Meteorology;33
4.4;1.4 Application to Wind Power Utilization;35
4.5;1.5 Conclusion;36
4.6;References;36
5;2 Wave Loads on Wind-Power Plants in Deep and Shallow Water;38
5.1;2.1 A Concept of Wave Design in Shallow Areas;38
5.2;2.2 Deep-Water Wave Data;39
5.3;2.3 Wave Transmission into a Shallow Area Using a Phase- Averaging Model;39
5.4;2.4 Wave Kinematics;41
5.5;2.5 Example of Wave Loads;41
5.6;2.6 Wave Transmission into a Shallow Area Using Boussinesq Models;43
5.7;2.7 Conclusions;43
5.8;2.8 Acknowledgements;43
5.9;References;44
6;3 Time Domain Comparison of Simulated and Measured Wind Turbine Loads Using Constrained Wind Fields;45
6.1;3.1 Introduction;45
6.2;3.2 Constrained Stochastic Simulation of Wind Fields;45
6.3;3.3 Stochastic Wind Fields which Encompass Measured Wind Speed Series;46
6.4;3.4 Load Calculations Based on Normal and Constrained Wind Field Simulations;48
6.5;3.5 Comparison between Measured Loads and Calculated Ones Based on Constrained Wind Fields;49
6.6;3.6 Conclusion;50
6.7;References;50
7;4 Mean Wind and Turbulence in the Atmospheric Boundary Layer Above the Surface Layer;51
7.1;4.1 Atmospheric Boundary Layers at Larger Heights;51
7.2;4.2 Data from Høvsøre Test Site;52
7.3;4.3 Discussion;54
7.4;References;55
8;5 Wind Speed Pro.les above the North Sea;56
8.1;5.1 Theory of Inertially Coupled Wind Profiles (ICWP);56
8.2;5.2 Comparison to Observations at Horns Rev and FINO1;58
8.3;References;60
9;6 Fundamental Aspects of Fluid Flow over Complex Terrain for Wind Energy Applications;61
9.1;6.1 Introduction;61
9.2;6.2 Experimental Setup;62
9.3;6.3 Results;63
9.4;6.4 Conclusions;66
9.5;References;66
10;7 Models for Computer Simulation of Wind Flow over Sparsely Forested Regions;67
10.1;7.1 Introduction;67
10.2;7.2 Mathematical Models;67
10.3;7.3 Results;68
10.4;7.4 Conclusions;70
10.5;References;70
11;8 Power Performance via Nacelle Anemometry on Complex Terrain;71
11.1;8.1 Introduction and Objectives;71
11.2;8.2 Experimental Installations;71
11.3;8.3 Experimental Analysis;71
11.4;8.4 Numerical Analysis;72
11.5;8.5 Results and Analysis;72
11.6;8.6 Conclusion;74
11.7;References;75
12;9 Pollutant Dispersion in Flow Around Bluff - Bodies Arrangement;76
12.1;9.1 Introduction;76
12.2;9.2 Results of Measurements;77
12.3;9.3 Conclusions;79
12.4;References;79
13;10 On the Atmospheric Flow Modelling over Complex Relief;81
13.1;10.1 Mathematical Model;81
13.2;10.2 Definition of the Computational Case;83
13.3;10.3 Conclusion;85
13.4;References;85
14;11 Comparison of Logarithmic Wind Pro.les and Power Law Wind Profiles and their Applicability for Offshore Wind Profiles;86
14.1;11.1 Wind Profile Laws;86
14.2;11.2 Comparison of Profile Laws;86
14.3;11.3 Application to Offshore Wind Profiles;87
14.4;11.4 Conclusions;89
14.5;References;89
15;12 Turbulence Modelling and Numerical Flow Simulation of Turbulent Flows;90
15.1;12.1 Summary;90
15.2;12.2 Introduction;90
15.3;12.3 Governing Equations;91
15.4;12.4 Direct Numerical Simulation;92
15.5;12.5 Statistical Turbulence Modelling;92
15.6;12.6 Subgrid Scale Turbulence Modelling;93
15.7;12.7 Conclusion;95
15.8;References;95
16;13 Gusts in Intermittent Wind Turbulence and the Dynamics of their Recurrent Times;97
16.1;13.1 Introduction;97
16.2;13.2 Scaling and Intermittency of Velocity Fluctuations;98
16.3;13.3 Gusts for Fixed Time Increments and Their Recurrent Times;98
16.4;13.4 The Dynamics of Inverse Times: Times Needed for Fluctuations Larger than a Fixed Velocity Threshold;102
16.5;References;103
17;14 Report on the Research Project OWID – Offshore Wind Design Parameter;104
17.1;14.1 Summary;104
17.2;14.2 Relevant Standards and Guidelines;104
17.3;14.3 Normal Wind Pro.le;105
17.4;14.4 Normal Turbulence Model;105
17.5;14.5 Extreme Wind Conditions;107
17.6;14.6 Outlook;108
17.7;14.7 Acknowledgement;108
17.8;References;108
18;15 Simulation of Turbulence, Gusts and Wakes for Load Calculations;109
18.1;15.1 Introduction;109
18.2;15.2 Simulation over Flat Terrain;109
18.3;15.3 Constrained Gaussian Simulation;111
18.4;15.4 Wakes;111
18.5;References;114
19;16 Short Time Prediction of Wind Speeds from Local Measurements;115
19.1;16.1 Wind Speed Predictions;115
19.2;16.2 Prediction of Wind Gusts;117
19.3;References;120
20;17 Wind Extremes and Scales: Multifractal Insights and Empirical Evidence;121
20.1;17.1 Atmospheric Dynamics, Cascades and Statistics;121
20.2;17.2 Extremes;122
20.3;17.3 Discussion and Conclusion;125
20.4;References;125
21;18 Boundary-Layer In.uence on Extreme Events in Stratified Flows over Orography;127
21.1;18.1 Introduction;127
21.2;18.2 Experimental Procedure;128
21.3;18.3 Basic Flow Pattern;128
21.4;18.4 Downstream Slip Condition;129
21.5;18.5 Boundary Layer and Wave Field Interaction;130
21.6;18.6 Concluding Remarks;131
21.7;References;131
22;19 The Statistical Distribution of Turbulence Driven Velocity Extremes in the Atmospheric Boundary Layer – Cartwright/ Longuet-Higgins Revised;132
22.1;19.1 Introduction;132
22.2;19.2 Model;133
22.3;References;135
23;20 Superposition Model for Atmospheric Turbulence;136
23.1;20.1 Introduction;136
23.2;20.2 Superposition Model;137
23.3;20.3 Conclusions and Outlook;139
23.4;References;139
24;21 Extreme Events Under Low-Frequency Wind Speed Variability and Wind Energy Generation;140
24.1;21.1 Introduction;140
24.2;21.2 Mathematical Background;141
24.3;21.3 Results and Conclusions;142
24.4;21.4 Acknowledgments;143
24.5;References;143
25;22 Stochastic Small-Scale Modelling of Turbulent Wind Time Series;144
25.1;22.1 Introduction;144
25.2;22.2 Consistent Modelling of Velocity and Dissipation;144
25.3;22.3 Re.ned Modelling: Stationarity and Skewness;145
25.4;22.4 Statistics of the Arti.cial Velocity Signal;147
25.5;References;147
26;23 Quantitative Estimation of Drift and Diffusion Functions from Time Series Data;149
26.1;23.1 Introduction;149
26.2;23.2 Direct Estimation of Drift and Diffusion;150
26.3;23.3 Stability of the Limiting Procedure;151
26.4;23.4 Finite Length of Time Series;151
26.5;23.5 Conclusion;152
26.6;References;153
27;24 Scaling Turbulent Atmospheric Stratification: A Turbulence/ Wave Wind Model;154
27.1;24.1 Introduction;154
27.2;24.2 An Extreme Unlocalized (Wave) Extension;155
27.3;References;157
28;25 Wind Farm Power Fluctuations;158
28.1;25.1 Introduction;158
28.2;25.2 Test Site;159
28.3;25.3 PSDs;160
28.4;25.4 Coherence;161
28.5;25.5 Conclusion;163
28.6;References;164
29;26 Network Perspective of Wind-Power Production;165
29.1;26.1 Introduction;165
29.2;26.2 Robustness in a Critical-Infrastructure Network Model;165
29.3;26.3 Two Wind-Power Related Model Extensions;169
29.4;26.4 Outlook;170
29.5;References;170
30;27 Phenomenological Response Theory to Predict Power Output;171
30.1;27.1 Introduction;171
30.2;27.2 Power Curve from Measurement Data;172
30.3;27.3 Relaxation Model;174
30.4;27.4 Discussion and Conclusion;175
30.5;References;176
31;28 Turbulence Correction for Power Curves;177
31.1;28.1 Introduction;177
31.2;28.2 Turbulence and Its Impact on Power Curves;178
31.3;28.3 Results;179
31.4;28.4 Conclusion;180
31.5;References;180
32;29 Online Modeling of Wind Farm Power for Performance Surveillance and Optimization;181
32.1;29.1 Wind Turbine Power Modeling Approach;181
32.2;29.2 Measurements and Simulation;182
32.3;29.3 Results;183
32.4;References;184
33;30 Uncertainty of Wind Energy Estimation;185
33.1;30.1 Introduction;185
33.2;30.2 Wind Climate of Hungary;185
33.3;30.3 The Uncertainty of the Power Law Wind Pro.le Estimation;187
33.4;30.4 Inter-Annual Variability of Wind Energy;187
33.5;30.5 Conclusion;188
33.6;References;188
34;31 Characterisation of the Power Curve for Wind Turbines by Stochastic Modelling;190
34.1;31.1 Introduction;190
34.2;31.2 Simple Relaxation Model;191
34.3;31.3 Langevin Method;192
34.4;31.4 Data Analysis;192
34.5;31.5 Conclusion and Outlook;193
34.6;References;194
35;32 Handling Systems Driven by Di.erent Noise Sources: Implications for Power Curve Estimations;195
35.1;32.1 Power Curve Estimation in a Turbulent Environment;195
35.2;32.2 Conclusions and Outlook;198
35.3;References;198
36;33 Experimental Researches of Characteristics of Windrotor Models with Vertical Axis of Rotation;199
36.1;33.1 Introduction;199
36.2;33.2 Experimental Installation and Models;200
36.3;33.3 Performance Characteristics of Windrotor Models;200
36.4;33.4 Results;202
37;34 Methodical Failure Detection in Grid Connected Wind Parks;203
37.1;34.1 Problem Description;203
37.2;34.2 Doubly-fed Induction Generators;203
37.3;34.3 Measurements;204
37.4;34.4 Conclusions;206
37.5;References;206
38;35 Modelling of the Transition Locations on a 30% thick Airfoil with Surface Roughness;207
38.1;35.1 Introduction;207
38.2;35.2 Measurements;208
38.3;35.3 Modelling;208
38.4;35.4 Results and Discussion;209
38.5;35.5 Conclusions;211
38.6;References;212
39;36 Helicopter Aerodynamics with Emphasis Placed on Dynamic Stall;214
39.1;36.1 Introduction;214
39.2;36.2 The Phenomenon Dynamic Stall;215
39.3;36.3 Numerical and Experimental Results for the Typical Helicopter Airfoil OA209;216
39.4;36.4 Conclusions;218
39.5;References;219
40;37 Determination of Angle of Attack (AOA) for Rotating Blades;220
40.1;37.1 Introduction;220
40.2;37.2 Determination of Angle of Attack;221
40.3;37.3 Numerical Results and Comparisons;222
40.4;37.4 Conclusion;224
40.5;References;224
41;38 Unsteady Characteristics of Flow Around an Airfoil at High Angles of Attack and Low Reynolds Numbers;225
41.1;38.1 Introduction;225
41.2;38.2 Test Facility and Setup;225
41.3;38.3 Experimental Results and Discussions;226
41.4;38.4 Conclusions;228
41.5;References;228
42;39 Aerodynamic Multi-Criteria Shape Optimization of VAWT Blade Profile by Viscous Approach;229
42.1;39.1 Introduction;229
42.2;39.2 Physical Model;229
42.3;39.3 Blade Profile Optimization;230
42.4;39.4 Numerical Results;231
42.5;39.5 Conclusion and Prospects;232
42.6;References;232
43;40 Rotation and Turbulence Effects on a HAWT Blade Airfoil Aerodynamics;234
43.1;40.1 Introduction;234
43.2;40.2 Experiment;234
43.3;40.3 Results and Discussion;235
43.4;40.4 Conclusion;238
43.5;References;238
44;41 3D Numerical Simulation and Evaluation of the Air Flow Through Wind Turbine Rotors with Focus on the Hub Area;240
44.1;41.1 Introduction;240
44.2;41.2 Method;241
44.3;41.3 Results;241
44.4;41.4 Perspective;243
44.5;References;243
45;42 Performance of the Risø-B1 Airfoil Family for Wind Turbines;244
45.1;42.1 Introduction;244
45.2;42.2 The Wind Tunnel;244
45.3;42.3 Results;245
45.4;42.4 Conclusions;246
45.5;42.5 Acknowledgements;247
45.6;References;247
46;43 Aerodynamic Behaviour of a New Type of Slow-Running VAWT;248
46.1;43.1 Introduction;248
46.2;43.2 Description of the Savonius Rotors;249
46.3;43.3 Description of the Numerical Model;249
46.4;43.4 Results;250
46.5;43.5 Conclusion;252
46.6;References;252
47;44 Numerical Simulation of Dynamic Stall using Spectral/ hp Method;254
47.1;44.1 Introduction;254
47.2;44.2 The Spectral/hp Method;255
47.3;44.3 The NekTar Code;256
47.4;44.4 First Results;257
47.5;44.5 Outlook;257
47.6;References;257
48;45 Modeling of the Far Wake behind a Wind Turbine;258
48.1;45.1 Extended Joukowski Model;258
48.2;45.2 Unsteady Behavior;260
48.3;45.3 Conclusions;261
48.4;References;261
49;46 Stability of the Tip Vortices in the Far Wake behind a Wind Turbine;262
49.1;46.1 Theory: Analysis of the Stability;262
49.2;46.2 Application of the Analysis;264
49.3;46.3 Conclusions;264
49.4;References;265
50;47 Modelling Turbulence Intensities Inside Wind Farms;266
50.1;47.1 Description of the Model;266
50.2;47.2 Comparison of the Model with Wake Measurements;267
50.3;47.3 Conclusion;268
50.4;References;269
51;48 Numerical Computations of Wind Turbine Wakes;271
51.1;48.1 Numerical Method;271
51.2;48.2 Simulation;272
51.3;References;275
52;49 Modelling Wind Turbine Wakes with a Porosity Concept;276
52.1;49.1 Introduction;276
52.2;49.2 Experimental Set-up;276
52.3;49.3 Results for Homogeneous Freestream Conditions;277
52.4;49.4 Results for Shear Freestream Conditions;278
52.5;49.5 Conclusion;280
52.6;References;280
53;50 Prediction of Wind Turbine Noise Generation and Propagation based on an Acoustic Analogy;281
53.1;50.1 Introduction;281
53.2;50.2 Problem De.nition;281
53.3;50.3 Results;282
53.4;References;284
54;51 Comparing WAsP and Fluent for Highly Complex Terrain Wind Prediction;285
54.1;51.1 Introduction;285
54.2;51.2 Alaiz Test Site;285
54.3;51.3 Description of the Models;286
54.4;51.4 Results;286
54.5;51.5 Conclusions;289
54.6;References;289
55;52 Fatigue Assessment of Truss Joints Based on Local Approaches;290
55.1;52.1 Introduction;290
55.2;52.2 Concepts;290
55.3;52.3 Examples;293
55.4;52.4 Conclusion;294
55.5;References;295
56;53 Advances in Offshore Wind Technology;296
56.1;53.1 Introduction;296
56.2;53.2 Wind Turbine Technology;296
56.3;53.3 Substructure Technology;298
56.4;53.4 Installation Methods;299
56.5;References;300
57;54 Beneffts of Fatigue Assessment with Local Concepts;302
57.1;54.1 Introduction;302
57.2;54.2 Applied Local Concepts;302
57.3;54.3 Comparison of Fatigue Design for a Tripod;303
57.4;54.4 Conclusion;305
57.5;References;305
58;55 Extension of Life Time of Welded Fatigue Loaded Structures;306
58.1;55.1 Introduction;306
58.2;55.2 Background;306
58.3;55.3 Experimental Studies;307
58.4;55.4 Results;307
58.5;55.5 Conclusions;309
58.6;References;309
59;56 Damage Detection on Structures of O.shore Wind Turbines using Multiparameter Eigenvalues;310
59.1;56.1 Introduction;310
59.2;56.2 The Multiparameter Eigenvalue Method;310
59.3;56.3 Validation of the Method;312
59.4;56.4 Outlook;313
59.5;References;313
60;57 Influence of the Type and Size of Wind Turbines on Anti- Icing Thermal Power Requirements for Blades;314
60.1;57.1 Introduction;314
60.2;57.2 Analysis of the Results;315
60.3;57.3 Anti-Icing Power as a Function of the Machine Size;315
60.4;57.4 Anti-Icing Power as a Function of the Machine Type;316
60.5;57.5 Conclusions;316
60.6;References;317
61;58 High-cycle Fatigue of “Ultra-High Performance Concrete” and “Grouted Joints” for O.shore Wind Energy Turbines;318
61.1;58.1 Introduction;318
61.2;58.2 Ultra-High Performance Concrete;318
61.3;58.3 Ultra-High Performance Concrete in Grouted Joints;319
61.4;58.4 Conclusions;320
61.5;References;321
62;59 A Modular Concept for Integrated Modeling of O . shore WEC Applied to Wave- Structure Coupling;322
62.1;59.1 Introduction;322
62.2;59.2 Integrated Modeling;322
62.3;59.3 Modeling of Wave Loads on the Support Structure Offshore Wind Energy Turbines;325
62.4;59.4 Future Demands;326
62.5;References;326
63;60 Solutions of Details Regarding Fatigue and the Use of High-Strength Steels for Towers of Offshore Wind Energy Converters;327
63.1;60.1 Introduction;327
63.2;60.2 Fatigue Tests;328
63.3;60.3 Finite-Element Analyses;329
63.4;References;332
64;61 On the Influence of Low-Level Jets on Energy Production and Loading of Wind Turbines;333
64.1;61.1 Introduction;333
64.2;61.2 Data and Methods;333
64.3;61.3 Results;334
64.4;61.4 Conclusions;335
64.5;References;336
65;62 Reliability of Wind Turbines;337
65.1;62.1 Introduction;337
65.2;62.2 Data Basis;337
65.3;62.3 Break Down of Wind Turbines;338
65.4;62.4 Malfunctions of Components;339
65.5;62.5 Conclusion;340
65.6;References;340


1 Offshore Wind Power Meteorology (p. 1-2)

Bernhard Lange

Summary. Wind farms built at offshore locations are likely to become an important part of the electricity supply of the future. For an efficient development of this energy source, in depth knowledge about the wind conditions at such locations is therefore crucial. Offshore wind power meteorology aims to provide this knowledge. This paper describes its scope and argues why it is needed for the efficient development of offshore wind power.

1.1 Introduction

Wind power utilization for electricity production has a huge resource and has proven itself to be capable of producing a substantial share of the electricity consumption. It is growing rapidly and can be expected to contribute substantially to our energy need in the future (GWEC, 2005). The ‘fuel’ of this electricity production is the wind. The wind is, on the other hand, also the most important constraint for turbine design, as it creates the loads the turbines have to withstand.

Therefore, accurate knowledge about the wind is needed for planning, design and operation of wind turbines. Some tasks where speci.c meteorological knowledge is essential are wind turbine design, resource assessment, wind power forecasting, etc. Wind power meteorology has therefore established itself as an important topic in applied meteorology (Petersen et al., 1998). For wind power utilization on land, substantial knowledge and experience has been gained in the last decades, based on the detailed meteorological and climatological knowledge available. Offshore, the meteorological knowledge is less developed since there has been little need to know the wind at heights of wind turbines over coastal waters and any measurements at offshore locations are di.cult and extremely expensive.

The aim of this paper is to describe the scope of offshore wind power meteorology and to argue why this topic should be given more attention both from the meteorological point of view and from the wind power application point of view. The paper is structured in three main sections: First some particular problems of offshore measurements are discussed in Sect. 1.2. This is followed by a section giving examples for meteorological effects specific for offshore conditions. Their importance for wind power application is shown in Sect. 1.4, followed by the conclusion.

1.2 Offshore Wind Measurements

In recent years, measurements with the aim to determine the wind conditions for offshore wind power utilization have been erected at a number of locations (Barthelmie et al., 2004). Offshore wind measurements are a challenging task, not only since an offshore foundation and support structure for the mast are needed, but also because of the challenges to provide an autonomous power supply and data transfer, the difficulties of maintenance and repair in an offshore environment, etc. These difficulties lead to high costs of offshore measurements and often lower data availability compared to locations on land. Additionally, the flow distortion of the self supporting mast usually requires a correction of the measured wind speeds for wind profile measurements (Lange, 2004).

Two measurements, from which results are shown in this paper, are the Rødsand field measurement in the Danish Balitc Sea and the FINO 1 measurement in the German Bight.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.