Pfeiffer | Conditional Independence in Applied Probability | Buch | 978-1-4612-6337-1 | sack.de

Buch, Englisch, 158 Seiten, Paperback, Format (B × H): 140 mm x 216 mm, Gewicht: 220 g

Reihe: Modules and Monographs in Undergraduate Mathematics and Its Applications

Pfeiffer

Conditional Independence in Applied Probability


1979
ISBN: 978-1-4612-6337-1
Verlag: Birkhäuser Boston

Buch, Englisch, 158 Seiten, Paperback, Format (B × H): 140 mm x 216 mm, Gewicht: 220 g

Reihe: Modules and Monographs in Undergraduate Mathematics and Its Applications

ISBN: 978-1-4612-6337-1
Verlag: Birkhäuser Boston


It would be difficult to overestimate the importance of stochastic independence in both the theoretical development and the practical appli­ cations of mathematical probability. The concept is grounded in the idea that one event does not "condition" another, in the sense that occurrence of one does not affect the likelihood of the occurrence of the other. This leads to a formulation of the independence condition in terms of a simple "product rule," which is amazingly successful in capturing the essential ideas of independence. However, there are many patterns of "conditioning" encountered in practice which give rise to quasi independence conditions. Explicit and precise incorporation of these into the theory is needed in order to make the most effective use of probability as a model for behavioral and physical systems. We examine two concepts of conditional independence. The first concept is quite simple, utilizing very elementary aspects of probability theory. Only algebraic operations are required to obtain quite important and useful new results, and to clear up many ambiguities and obscurities in the literature.

Pfeiffer Conditional Independence in Applied Probability jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


A. Preliminaries.- 1. Probability Spaces and Random Vectors.- 2. Mathematical Expectation.- 3. Problems.- B. Conditional Independence of Events.- 1. The Concept.- 2. Some Patterns of Probable Inference.- 3. A Classification Problem.- 4. Problems.- C. Conditional Expectation.- 1. Conditioning by an Event.- 2. Conditioning by a Random Vector-Special Cases.- 3. Conditioning by a Random Vector-General Case.- 4. Properties of Conditional Expectation.- 5. Conditional Distributions.- 6. Conditional Distributions and Bayes’ Theorem.- 7. Proofs of Properties of Conditional Expectation.- 8. Problems.- D. Conditional Independence, Given a Random Vector.- 1. The Concept and Some Basic Properties.- 2. Some Elements of Bayesian Analysis.- 3. A One-Stage Bayesian Decision Model.- 4. A Dynamic-Programming Example.- 5. Proofs of the Basic Properties.- 6. Problems.- E. Markov Processes and Conditional Independence.- 1. Discrete-Parameter Markov Processes.- 2. Markov Chains with Costs and Rewards.- 3. Continuous-Parameter Markov Processes.- 4. The Chapman-Kolmogorov Equation.- 5. Proof of a Basic Theorem on Markov Processes.- 6. Problems.- Appendices.- Appendix I. Properties of Mathematical Expectation.- Appendix II. Properties of Conditional Expectation, Given a Random Vector.- Appendix III. Properties of Conditional Independence, Given a Random Vector.- References.- Selected Answers, Hints, and Key Steps.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.