Piper | Can We Be Wrong? The Problem of Textual Evidence in a Time of Data | Buch | 978-1-108-92620-1 | sack.de

Buch, Englisch, 75 Seiten, Format (B × H): 153 mm x 229 mm, Gewicht: 136 g

Reihe: Elements in Digital Literary Studies

Piper

Can We Be Wrong? The Problem of Textual Evidence in a Time of Data


Erscheinungsjahr 2020
ISBN: 978-1-108-92620-1
Verlag: Cambridge University Press

Buch, Englisch, 75 Seiten, Format (B × H): 153 mm x 229 mm, Gewicht: 136 g

Reihe: Elements in Digital Literary Studies

ISBN: 978-1-108-92620-1
Verlag: Cambridge University Press


This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment.

Piper Can We Be Wrong? The Problem of Textual Evidence in a Time of Data jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction, or What's Wrong with Literary Studies?; Part I. Theory: 1. Probable Cause; Part II. Evidence Eve Kraicer, Nicholas King, Emma Ebowe, Matthew Hunter, Victoria Svaikovsky, and Sunyam Bagga; 2. Machine Learning as a Collaborative Process; 3. Results; Part III. Discussion: 4. Don't Generalize (from Case Studies): The Case for Open Generalization; 5. Don't Generalize (At All): The Case for the Open Mind; Conclusion: On the Mutuality of Method.


Piper, Andrew
Andrew Piper is Professor and William Dawson Scholar in the Department of Languages, Literatures, and Cultures at McGill University. He is the director of.txtLAB, a laboratory for cultural analytics, and editor of the Journal of Cultural Analytics. He is also the author of Enumerations: Data and Literary Study (Chicago 2018).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.