Prasad / Aranda | Approaches in Bioremediation | E-Book | www.sack.de
E-Book

E-Book, Englisch, 413 Seiten

Reihe: Nanotechnology in the Life Sciences

Prasad / Aranda Approaches in Bioremediation

The New Era of Environmental Microbiology and Nanobiotechnology
1. Auflage 2018
ISBN: 978-3-030-02369-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

The New Era of Environmental Microbiology and Nanobiotechnology

E-Book, Englisch, 413 Seiten

Reihe: Nanotechnology in the Life Sciences

ISBN: 978-3-030-02369-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Bioremediation refers to the clean-up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment.For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation.Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions.  In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.    


Ram Prasad, Ph.D. is associate with Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India since 2005. His research interest includes plant-microbe-interactions, sustainable agriculture and microbial nanobiotechnology. Dr. Prasad has more than hundred publications to his credit, including research papers, review articles & book chapters and five patents issued or pending, and edited or authored several books. Dr. Prasad has twelve years of teaching experience and he has been awarded the Young Scientist Award (2007) & Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB fellowship (2010) by the Society for Applied Biotechnology; the American Cancer Society UICC International Fellowship for Beginning Investigators, USA (2014); Outstanding Scientist Award (2015) in the field of Microbiology by Venus International Foundation; BRICPL Science Investigator Award (ICAABT-2017) and Research Excellence Award (2018). He has been serving as editorial board members: Frontiers in Microbiology, Frontiers in Nutrition, Academia Journal of Biotechnology including Series editor of Nanotechnology in the Life Sciences, Springer Nature, USA. Previously, Dr. Prasad served as Visiting Assistant Professor, Whiting School of Engineering, Department of Mechanical Engineering at Johns Hopkins University, USA and presently, working as Research Associate Professor at School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China. 
Elisabet Aranda, PhD is Ramon y Cajal Researcher at the Microbiology Department of the University of Granada (UGR), and member of the Institute of Water Research (UGR). She has more than sixteen years of research experience. She has several pre and post-doctoral research stays (Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Spain; University of Naples Federico II, Italy; Institute of Mass Spectrometry, Proteomic and Molecular Biology, Italy; IHIZ Zittau-Technical University of Dresde, Germany; Lawrence Berkeley National Laboratory of the University of California, USA, among others). Her main research expertise is in the field of fungal bioremediation, fungal degradation mechanisms of priority micropollutants and emerging contaminants, in water and soil systems, and the application of molecular tools such as NGS (Illumina) and proteomic approaches in this field. She has published more than fifty publications in this topic (including research papers, review articles and book chapters). She is the inventor of two patents. She is associate Editor in Frontiers in Microbiology, and member of Board of Directors of the specialized group 'Biodeterioration, Biodegradation and Bioremediation' of the Spanish Society of Microbiology (SEM). Among the prizes with which it has been awarded, stands out the 'Innova Sustainable' award from the Aquae foundation.   

Prasad / Aranda Approaches in Bioremediation jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Contents;10
4;Contributors;12
5;About the Editors;16
6;Chapter 1: Stepwise Strategies for the Bioremediation of Contaminated Soils: From the Microbial Isolation to the Final Application;18
6.1;1.1 Introduction;19
6.2;1.2 Niche: Selection of the Right Place for Microbial Isolation;19
6.2.1;1.2.1 Bioremediation Strategies and Microorganisms;19
6.3;1.3 Microbial Isolation;22
6.3.1;1.3.1 Soil Sampling Design;23
6.3.1.1;1.3.1.1 Sample Collection and Transportation;24
6.3.1.2;1.3.1.2 Samples Processing and Storage;25
6.3.2;1.3.2 Isolation of Microorganisms and Metagenomic Analysis;26
6.3.2.1;1.3.2.1 Metagenomic Analysis;26
6.4;1.4 Bacterial Population Extraction from the Soil Matrix;26
6.4.1;1.4.1 Bioremediation-Oriented Microbial Isolation;27
6.4.2;1.4.2 Selection and Characterization of Microorganisms for Soil Bioremediation;28
6.4.2.1;1.4.2.1 Selection of Microorganisms for Bioremediation;28
6.4.2.2;1.4.2.2 Characterization of Selected Microorganisms;29
6.4.2.2.1;Morphological Characterization;29
6.4.2.2.2;Metabolic Characterization;30
6.4.2.2.3;Enzymatic Characterization;30
6.4.2.2.4;Biosurfactant Production;31
6.4.2.2.5;Siderophore Synthesis;32
6.5;1.5 Molecular Omics Technologies in Microorganisms’ Selection and Characterization;32
6.5.1;1.5.1 Metagenomics;32
6.5.2;1.5.2 Metatranscriptomics;33
6.5.3;1.5.3 Metaproteomics;33
6.5.4;1.5.4 Metabolomics;34
6.6;1.6 Microbial Features Involved in Resistance Against Pollutants;35
6.6.1;1.6.1 Removal of the Pollutant by Biomineralization;36
6.6.2;1.6.2 Synthesis of Carotenoids;37
6.6.3;1.6.3 Production of Exocellular Polymeric Substances;38
6.7;1.7 Taking Advantage of Special Features Observed in Microorganisms That Tolerate Pollutants and Extreme Conditions;39
6.8;1.8 Final Comments;39
6.9;References;40
7;Chapter 2: Transcriptomics as a First Choice Gate for Fungal Biodegradation Processes Description;46
7.1;2.1 Introduction: Fungal Bioremediation (Mycoremediation);46
7.2;2.2 Molecular Approaches in Fungal Bioremediation;48
7.3;2.3 Fungal Transcriptomic Perspectives;54
7.4;2.4 Concluding Remarks;55
7.5;References;56
8;Chapter 3: Omics Approaches: Impact on Bioremediation Techniques;60
8.1;3.1 The Uprising of the “Omics”;60
8.2;3.2 The Promises of Metagenomics;62
8.3;3.3 Transcriptomics;64
8.4;3.4 Proteomic in a Degradation Concept;65
8.4.1;3.4.1 Metaproteomic;69
8.5;References;75
9;Chapter 4: Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities in Model Fungi;77
9.1;4.1 Xenobiotic Compounds;77
9.2;4.2 Environmental Biotechnology Using Fungi;79
9.3;4.3 The Relevance of Gene Databases in Fungal Engineering;81
9.4;4.4 Earlier Biotechnologies for Gene Manipulation;83
9.5;4.5 An Introduction to CRISPR/Cas Theory and Methodology;86
9.6;4.6 Potential Experiments and Future Directions for Manipulating Fungal Xenobiotic Metabolism;88
9.7;4.7 Conclusion;89
9.8;References;89
10;Chapter 5: Phytoremediation and Fungi: An Underexplored Binomial;95
10.1;5.1 Environmental Pollution: A General Background;95
10.2;5.2 Remediation Technologies;96
10.3;5.3 Biological Treatments;99
10.3.1;5.3.1 Bacteria;100
10.3.2;5.3.2 Fungi;101
10.3.3;5.3.3 Phytoremediation;102
10.4;5.4 Phytoremediation and Fungi: Cases of Study and Perspectives;104
10.5;References;107
11;Chapter 6: Bioremediation of Polythenes and Plastics: A Microbial Approach;112
11.1;6.1 Introduction;112
11.2;6.2 Environmental Effects of Plastic Pollution;113
11.3;6.3 Microbial Role in Biodegradation of Plastics;116
11.4;6.4 Bacteria Involved in Biodegradation of Plastics and Polythenes;117
11.5;6.5 Fungi Involved in Plastic Biodegradation;119
11.6;6.6 Factors Involved in Biodegradation of Plastics;121
11.7;6.7 Different Steps of Plastic Degradation by Microorganisms;123
11.8;6.8 Enzymes Involved in Biodegradation of Plastics and Polythenes;124
11.9;6.9 Conclusion;126
11.10;References;127
12;Chapter 7: Microbial Dynamics During the Bioremediation of Petroleum Hydrocarbon-Contaminated Soils Through Biostimulation: An Overview;130
12.1;7.1 Introduction;130
12.2;7.2 Bioremediation;133
12.3;7.3 Biostimulation;134
12.4;7.4 Microbial Dynamics During the Biostimulation of Petroleum Hydrocarbon-Contaminated Soils;135
12.4.1;7.4.1 Activity of Soil Microbial Communities;135
12.4.2;7.4.2 Abundance of Soil Microbial Communities;136
12.4.3;7.4.3 Taxonomic Composition of Soil Microbial Communities;137
12.4.3.1;7.4.3.1 Bacterial Communities;138
12.4.3.2;7.4.3.2 Archaeal Communities;140
12.4.3.3;7.4.3.3 Fungal Communities;141
12.5;7.5 Conclusions and Final Remarks;143
12.6;References;144
13;Chapter 8: Microalgae-Bacteria Consortia for the Removal of Phenolic Compounds from Industrial Wastewaters;150
13.1;8.1 Phenolic Compounds (PCs): Definition, Occurrence in the Environment, Sources, and Toxicity for Living Organisms;151
13.2;8.2 Overview of the Strategies for the Removal of PCs from Wastewaters;153
13.2.1;8.2.1 Physicochemical Methods;153
13.2.2;8.2.2 Biological Treatments;155
13.3;8.3 Removal of PCs by Bacteria and Archaea;156
13.4;8.4 Removal of PCs by Fungi;164
13.5;8.5 Removal of PCs by Microalgae;167
13.6;8.6 The Potential of Microalgae-Bacteria Consortia for the Removal/Biodegradation of PCs from Industrial Wastewaters;174
13.6.1;8.6.1 Selection of Microalgae and Bacteria for the Construction of Consortia Able to Remove PCs;175
13.6.1.1;8.6.1.1 Adaptation of Strains to the Target Pollutants;175
13.6.1.2;8.6.1.2 Ecological Microalgae-Bacteria Interactions;176
13.6.2;8.6.2 Cultivation of Microalgae and Microalgae-Bacteria Consortia. Photobioreactors (PBRs);178
13.6.2.1;8.6.2.1 Types of PBRs;180
13.6.2.2;8.6.2.2 Optimization of Operating Conditions for the Removal of PCs by Microalgae-Bacteria Consortia in PBRs;181
13.6.3;8.6.3 Removal of PCs by Microalgae-Bacteria Consortia in PBRs;183
13.7;8.7 Conclusions and Future Prospects;189
13.8;References;190
14;Chapter 9: Fungal Technology Applied to Distillery Effluent Treatment;200
14.1;9.1 Sugarcane Vinasse: Physicochemical Characteristics and Conventional Management Practices;200
14.2;9.2 Fungal Technology Applied to the Treatment of Distillery Effluents: Basic Principles;203
14.3;9.3 Fungus-Treated Sugarcane Vinasse;205
14.4;9.4 Autochthonous Vinasse-Degrading Fungus;207
14.4.1;9.4.1 Experimental Procedures;208
14.4.2;9.4.2 Data Interpretation and Statistical Approaches;208
14.5;9.5 Concluding Remarks;210
14.6;References;211
15;Chapter 10: Constructed Wetlands to Treat Petroleum Wastewater;213
15.1;10.1 Petroleum Industry;214
15.1.1;10.1.1 Petroleum Refining Wastewater Types;214
15.2;10.2 Petroleum Contaminants;215
15.2.1;10.2.1 Organic Pollutants;218
15.2.2;10.2.2 Heavy Metals;219
15.2.3;10.2.3 Nutrients;220
15.3;10.3 Constructed Wetlands for Treatment of Petroleum Refining Wastewater;220
15.3.1;10.3.1 Conventional Wastewater Treatment Technologies;220
15.3.2;10.3.2 Constructed Wetland Design;221
15.3.3;10.3.3 Constructed Wetlands for Petroleum Refinery Wastewater;222
15.4;10.4 Potential of CWs to Treat Petroleum Wastewater;224
15.4.1;10.4.1 Surface Flow CWs;224
15.4.2;10.4.2 Subsurface Flow CWs;225
15.4.2.1;10.4.2.1 Vertical Subsurface Flow CWs;225
15.4.2.2;10.4.2.2 Horizontal Subsurface Flow CWs;230
15.4.3;10.4.3 Hybrid CWs;231
15.5;10.5 Removal Pathways in Constructed Wetlands;232
15.6;10.6 Components of Constructed Wetland Treatment;235
15.6.1;10.6.1 The Macrophyte Component;235
15.6.1.1;10.6.1.1 Role and Macrophytes Used in Treatment Wetlands;235
15.7;10.7 Microorganisms;238
15.7.1;10.7.1 Microbial Ecology of Petroleum-Degrading Constructed Wetlands;238
15.7.2;10.7.2 Potential of Hydrocarbon-Degrading Microorganisms;239
15.8;10.8 Role of the Substrate Media of the Constructed Wetland;240
15.9;10.9 Capital, Operation and Maintenance Costs;242
15.10;References;243
16;Chapter 11: Strategies for Biodegradation of Fluorinated Compounds;252
16.1;11.1 Introduction: Fluorinated Organic Compounds;253
16.2;11.2 Environmental Concerns;253
16.3;11.3 Naturally Produced Fluorinated Compounds;254
16.4;11.4 Biodegradation of Fluorinated Organic Compounds;256
16.4.1;11.4.1 Mechanisms of Biodegradation;256
16.4.2;11.4.2 Selection/Attainment of Degrading Organisms;258
16.4.3;11.4.3 Effects of Co-contamination in Biodegradation;265
16.4.4;11.4.4 Enantioselectivity in Biodegradation;266
16.4.5;11.4.5 Mineralization Versus Biotransformation;267
16.4.6;11.4.6 Analytical Methods Used for Monitoring the Degradation of Fluorinated Compounds;271
16.5;11.5 Bioaugmentation as an Approach for the Degradation of Fluorinated Compounds;273
16.5.1;11.5.1 Principles and Strategies;273
16.5.2;11.5.2 Delivery Approaches for Introduction of the Specific Degraders;275
16.5.3;11.5.3 Application of Bioaugmentation Processes to Improve Fluoroorganics Removal;277
16.6;11.6 Conclusion;279
16.7;References;280
17;Chapter 12: Marine-Derived Fungi: Promising Candidates for Enhanced Bioremediation;294
17.1;12.1 Introduction;294
17.2;12.2 Diverse Potentials of Marine-Derived Fungi Relevant to Bioremediation;295
17.2.1;12.2.1 Marine-Derived Fungi in Biofilm Formation;295
17.2.2;12.2.2 Marine-Derived Fungi in Heavy Metal(oid) Removal;297
17.2.3;12.2.3 Marine-Derived Fungi and Treatment of Synthetic Dyes and Textile-Dye Effluent;299
17.2.4;12.2.4 Marine-Derived Fungi and Plastic Degradation;300
17.2.4.1;12.2.4.1 Polyhydroxyalkanoates (PHAs);301
17.2.4.2;12.2.4.2 Polyethylenes (PE);302
17.2.5;12.2.5 Marine-Derived Fungi in Petroleum Oil Degradation;303
17.3;12.3 Conclusion;307
17.4;References;307
18;Chapter 13: Environmental Nanotechnology: Applications of Nanoparticles for Bioremediation;314
18.1;13.1 Introduction;314
18.2;13.2 Emergence of Nanotechnology;315
18.3;13.3 Nanoremediation;316
18.3.1;13.3.1 Nanoiron and Its Derivatives;317
18.3.2;13.3.2 Nanocrystals and Carbon Nanotubes;318
18.3.3;13.3.3 Single-Enzyme Nanoparticles;319
18.3.4;13.3.4 Engineered Polymeric Nanoparticles;320
18.3.5;13.3.5 Biogenic Uraninite Nanoparticles;320
18.3.6;13.3.6 Dendrimers;320
18.3.7;13.3.7 Titanium Dioxide (TiO2)-Based Nanoparticles;321
18.3.8;13.3.8 Bimetallic Nanoparticles;322
18.4;13.4 Potential Harmful Effects of Nanoparticles;323
18.5;13.5 Conclusion;324
18.6;References;324
19;Chapter 14: Fungal Nanoparticles Formed in Saline Environments Are Conducive to Soil Health and Remediation;329
19.1;14.1 Introduction;329
19.2;14.2 Isolation and Characterizations of Halotolerant or Halophilic Fungi;333
19.3;14.3 Nanoparticles Synthesized by Halotolerant or Halophilic Fungi;337
19.4;14.4 Roles of Fungi and Nanoparticles in Soil Mycoremediation and Health;341
19.5;14.5 Remarks and Prospects;344
19.6;References;346
20;Chapter 15: Nanobioremediation: An Innovative Approach to Fluoride (F) Contamination;354
20.1;15.1 Introduction;354
20.2;15.2 Sources of Fluoride;356
20.3;15.3 Effects of Fluoride on Life-Forms;356
20.4;15.4 Nanotechnology for Fluoride Remediation;357
20.4.1;15.4.1 Nanotubes;358
20.4.2;15.4.2 Nanoscale Iron Nanoparticles;359
20.4.3;15.4.3 Graphene-Based Nanomaterials;360
20.5;15.5 Advantages and Disadvantages;360
20.6;15.6 Conclusion;361
20.7;References;362
21;Chapter 16: Nanotechnology: A New Scientific Outlook for Bioremediation of Dye Effluents;365
21.1;16.1 Introduction;365
21.2;16.2 Dyes and Their Classification;367
21.3;16.3 Toxicology Effects of Dye;367
21.3.1;16.3.1 Acute Toxicity of Textile Dye;368
21.3.2;16.3.2 Chronic Toxicity of Textile Dye;368
21.4;16.4 Nanotechnology for Textile Dye Effluent Remediation;370
21.4.1;16.4.1 Nano-adsorbents;370
21.4.1.1;16.4.1.1 Oxide-Based Nano-adsorbents;371
21.4.1.2;16.4.1.2 Carbon-Based Adsorbents;371
21.4.1.2.1;Activated Carbon;371
21.4.1.2.2;Carbon Nanotube;372
21.4.2;16.4.2 Nano-catalysts;373
21.4.3;16.4.3 Nanofiltration Membranes;374
21.5;16.5 Mechanism for Textile Dye Effluents Adsorption;374
21.6;16.6 Advantages and Disadvantages;375
21.7;16.7 Conclusion;376
21.8;References;376
22;Chapter 17: Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications;379
22.1;17.1 Introduction;380
22.2;17.2 Dimensionality-Based Classification of Carbon Nanostructures;381
22.2.1;17.2.1 Zero-Dimensional Materials;382
22.2.1.1;17.2.1.1 Fullerenes;382
22.2.2;17.2.2 One-Dimensional Materials;383
22.2.2.1;17.2.2.1 Carbon Nanotubes and Nanofibers;383
22.2.3;17.2.3 Two-Dimensional Materials;383
22.2.3.1;17.2.3.1 Graphene;383
22.2.4;17.2.4 Three-Dimensional Materials;384
22.2.4.1;17.2.4.1 Carbon Sponges;384
22.3;17.3 Environmental Remediation Applications;385
22.3.1;17.3.1 Chemical Contaminants;385
22.3.2;17.3.2 Gaseous Contaminants;388
22.3.3;17.3.3 Biological Contaminants;389
22.3.4;17.3.4 Use of Carbon-Based Nanomaterials in Environmental Remediation Applications;390
22.4;17.4 Energy Applications;392
22.4.1;17.4.1 Dye-Sensitized Solar Cells;392
22.4.2;17.4.2 Supercapacitors;393
22.4.3;17.4.3 Batteries;394
22.5;17.5 Conclusion and Future Prospects;394
22.6;References;395
23;Index;403



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.