E-Book, Englisch, 139 Seiten, eBook
Reihe: Data Analytics
Qu / Nosouhi / Cui Personalized Privacy Protection in Big Data
1. Auflage 2021
ISBN: 978-981-16-3750-6
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 139 Seiten, eBook
Reihe: Data Analytics
ISBN: 978-981-16-3750-6
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
The advances discussed cover various applications, e.g. cyber-physical systems, social networks, and location-based services. Given its scope, the book is of interest to scientists, policy-makers, researchers, and postgraduates alike.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
· Chapter 1: Introduction
o Privacy research landscape
o Personalized privacy overview
o Contribution of this book
o Remainder of the book
· Chapter 2: Current Methods of Privacy Protection
o Cryptography based methods
o Differential privacy methodso Anonymity-based methods
o Clustering-base methods
o Machine learning and AI methods
· Chapter 3: Privacy Attacks
o Attack classification
o Rationale of the attacks
o The comparison of attacks· Chapter 4: Personalize Privacy Defense
o Personalized privacy in cyber-physical systems
o Personalized privacy in social networks
o Personalized privacy in smart city
o Personalized privacy in location-based services
o Personalized privacy on the rise
· Chapter 5: Future Directionso Trade-off optimization
o Decentralized privacy protection
o Privacy-preserving federated learning
o Federated generative adversarial nets
· Chapter6: Summary and Outlook




