Quan | Image-Based Modeling | E-Book | www.sack.de
E-Book

E-Book, Englisch, 251 Seiten

Quan Image-Based Modeling


1. Auflage 2010
ISBN: 978-1-4419-6679-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 251 Seiten

ISBN: 978-1-4419-6679-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



'This book guides you in the journey of 3D modeling from the theory with elegant mathematics to applications with beautiful 3D model pictures. Written in a simple, straightforward, and concise manner, readers will learn the state of the art of 3D reconstruction and modeling.' -Professor Takeo Kanade, Carnegie Mellon University The computer vision and graphics communities use different terminologies for the same ideas. This book provides a translation, enabling graphics researchers to apply vision concepts, and vice-versa, independence of chapters allows readers to directly jump into a specific chapter of interest, compared to other texts, gives more succinct treatment overall, and focuses primarily on vision geometry. Image-Based Modeling is for graduate students, researchers, and engineers working in the areas of computer vision, computer graphics, image processing, robotics, virtual reality, and photogrammetry.

Long Quan is a Professor of the Department of Computer Science and Engineering at the Hong Kong University of Science and Technology. He received a Ph.D. degree in Computer Science from France, and has been a CNRS researcher at INRIA. Professor Quan is a Fellow of the IEEE Computer Society.

Quan Image-Based Modeling jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;6
2;Preface;7
3;Acknowledgements;9
4;Notation;10
5;Contents;11
6;Introduction;15
7;Part I Geometry: fundamentals of multi-view geometry;19
7.1;Geometry prerequisite;20
7.1.1;2.1 Introduction;21
7.1.2;2.2 Projective geometry;21
7.1.2.1;2.2.1 The basic concepts;21
7.1.2.2;2.2.2 Projective spaces and transformations;23
7.1.2.3;2.2.3 Affine and Euclidean specialization;29
7.1.3;2.3 Algebraic geometry;34
7.1.3.1;2.3.1 The simple methods;34
7.1.3.2;2.3.2 Ideals, varieties, and Gr¨obner bases;36
7.1.3.3;2.3.3 Solving polynomial equations with Gr¨obner bases;37
7.2;Multi-view geometry;41
7.2.1;3.1 Introduction;42
7.2.2;3.2 The single-view geometry;42
7.2.2.1;3.2.1 What is a camera?;42
7.2.2.2;3.2.2 Where is the camera?;47
7.2.2.3;3.2.3 The DLT calibration;49
7.2.2.4;3.2.4 The three-point pose algorithm;51
7.2.3;3.3 The uncalibrated two-view geometry;54
7.2.3.1;3.3.1 The fundamental matrix;55
7.2.3.2;3.3.2 The seven-point algorithm;57
7.2.3.3;3.3.3 The eight-point linear algorithm;58
7.2.4;3.4 The calibrated two-view geometry;59
7.2.4.1;3.4.1 The essential matrix;59
7.2.4.2;3.4.2 The five-point algorithm;61
7.2.5;3.5 The three-view geometry;65
7.2.5.1;3.5.1 The trifocal tensor;66
7.2.5.2;3.5.2 The six-point algorithm;70
7.2.5.3;3.5.3 The calibrated three views;75
7.2.6;3.6 The N-view geometry;78
7.2.6.1;3.6.1 The multi-linearities;78
7.2.6.2;3.6.2 Auto-calibration;80
7.2.7;3.7 Discussions;84
7.2.8;3.8 Bibliographic notes;84
8;Part II Computation: from pixels to 3D points;86
8.1;Feature point;87
8.1.1;4.1 Introduction;88
8.1.2;4.2 Points of interest;88
8.1.2.1;4.2.1 Tracking features;88
8.1.2.2;4.2.2 Matching corners;90
8.1.2.3;4.2.3 Discussions;91
8.1.3;4.3 Scale invariance;92
8.1.3.1;4.3.1 Invariance and stability;92
8.1.3.2;4.3.2 Scale, blob and Laplacian;92
8.1.3.3;4.3.3 Recognizing SIFT;93
8.1.4;4.4 Bibliographic notes;94
8.2;Structure from Motion;95
8.2.1;5.1 Introduction;96
8.2.1.1;5.1.1 Least squares and bundle adjustment;96
8.2.1.2;5.1.2 Robust statistics and RANSAC;98
8.2.2;5.2 The standard sparse approach;100
8.2.2.1;5.2.1 A sequence of images;102
8.2.2.2;5.2.2 A collection of images;103
8.2.3;5.3 The match propagation;104
8.2.3.1;5.3.1 The best-first match propagation;104
8.2.3.2;5.3.2 The properties of match propagation;107
8.2.3.3;5.3.3 Discussions;111
8.2.4;5.4 The quasi-dense approach;113
8.2.4.1;5.4.1 The quasi-dense resampling;113
8.2.4.2;5.4.2 The quasi-dense SFM;114
8.2.4.3;5.4.3 Results and discussions;121
8.2.5;5.5 Bibliographic notes;127
9;Part III Modeling: from 3D points to objects;129
9.1;Surface modeling;130
9.1.1;6.1 Introduction;131
9.1.2;6.2 Minimal surface functionals;132
9.1.3;6.3 A unified functional;133
9.1.4;6.4 Level-set method;133
9.1.5;6.5 A bounded regularization method;134
9.1.6;6.6 Implementation;136
9.1.7;6.7 Results and discussions;138
9.1.8;6.8 Bibliographic notes;145
9.2;Hair modeling;146
9.2.1;7.1 Introduction;147
9.2.2;7.2 Hair volume determination;148
9.2.3;7.3 Hair fiber recovery;149
9.2.3.1;7.3.1 Visibility determination;149
9.2.3.2;7.3.2 Orientation consistency;150
9.2.3.3;7.3.3 Orientation triangulation;150
9.2.4;7.4 Implementation;151
9.2.5;7.5 Results and discussions;153
9.2.6;7.6 Bibliographic notes;157
9.3;Tree modeling;158
9.3.1;8.1 Introduction;159
9.3.2;8.2 Branche recovery;162
9.3.2.1;8.2.1 Reconstruction of visible branches;162
9.3.2.2;8.2.2 Synthesis of occluded branches;164
9.3.2.3;8.2.3 Interactive editing;166
9.3.3;8.3 Leaf extraction and reconstruction;168
9.3.3.1;8.3.1 Leaf texture segmentation;168
9.3.3.2;8.3.2 Graph-based leaf extraction;171
9.3.3.3;8.3.3 Model-based leaf reconstruction;174
9.3.4;8.4 Results and discussions;176
9.3.5;8.5 Bibliographic notes;183
9.4;Fac¸ade modeling;185
9.4.1;9.1 Introduction;186
9.4.2;9.2 Fac¸ade initialization;188
9.4.2.1;9.2.1 Initial flat rectangle;189
9.4.2.2;9.2.2 Texture composition;189
9.4.2.3;9.2.3 Interactive refinement;191
9.4.3;9.3 Fac¸ade decomposition;192
9.4.3.1;9.3.1 Hidden structure discovery;192
9.4.3.2;9.3.2 Recursive subdivision;193
9.4.3.3;9.3.3 Repetitive pattern representation;194
9.4.3.4;9.3.4 Interactive subdivision refinement;195
9.4.4;9.4 Fac¸ade augmentation;196
9.4.4.1;9.4.1 Depth optimization;196
9.4.4.2;9.4.2 Cost definition;198
9.4.4.3;9.4.3 Interactive depth assignment;198
9.4.5;9.5 Fac¸ade completion;200
9.4.6;9.6 Results and discussions;200
9.4.7;9.7 Bibliographic notes;205
9.5;Building modeling;207
9.5.1;10.1 Introduction;208
9.5.2;10.2 Pre-processing;209
9.5.3;10.3 Building segmentation;211
9.5.3.1;10.3.1 Supervised class recognition;211
9.5.3.2;10.3.2 Multi-view semantic segmentation;213
9.5.4;10.4 Building partition;215
9.5.4.1;10.4.1 Global vertical alignment;216
9.5.4.2;10.4.2 Block separator;216
9.5.4.3;10.4.3 Local horizontal alignment;217
9.5.5;10.5 Fac¸ade modeling;218
9.5.5.1;10.5.1 Inverse orthographic composition;219
9.5.5.2;10.5.2 Structure analysis and regularization;221
9.5.5.3;10.5.3 Repetitive pattern rediscovery;224
9.5.5.4;10.5.4 Boundary regularization;225
9.5.6;10.6 Post-processing;226
9.5.7;10.7 Results and discussions;227
9.5.8;10.8 Bibliographic notes;232
10;List of Algorithms;234
11;List of Figures;235
12;References;243
13;Index;255



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.