Buch, Englisch, 202 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 262 g
A Tutorial-Based Approach
Buch, Englisch, 202 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 262 g
ISBN: 978-0-367-67024-5
Verlag: Chapman and Hall/CRC
Big Data: A Tutorial-Based Approach explores the tools and techniques used to bring about the marriage of structured and unstructured data. It focuses on Hadoop Distributed Storage and MapReduce Processing by implementing (i) Tools and Techniques of Hadoop Eco System, (ii) Hadoop Distributed File System Infrastructure, and (iii) efficient MapReduce processing. The book includes Use Cases and Tutorials to provide an integrated approach that answers the ‘What’, ‘How’, and ‘Why’ of Big Data.
Features
- Identifies the primary drivers of Big Data
- Walks readers through the theory, methods and technology of Big Data
- Explains how to handle the 4 V’s of Big Data in order to extract value for better business decision making
- Shows how and why data connectors are critical and necessary for Agile text analytics
- Includes in-depth tutorials to perform necessary set-ups, installation, configuration and execution of important tasks
- Explains the command line as well as GUI interface to a powerful data exchange tool between Hadoop and legacy r-dbms databases
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Cloud-Computing, Grid-Computing
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
Weitere Infos & Material
Chapter 1: Introduction to Big Data
Chapter 2: Big Data Implementation
Chapter 3: Big Data Use Cases
Chapter 4: Big Data Migration
Chapter 5: Big Data Ingestion, Integration, and Management
Chapter 6: Big Data Repository
Chapter 7: Big Data Visualization
Chapter 8: Structured and Un-Structured Data Analytics
Chapter 9: Data Virtualization
Chapter 10: Cloud Computing