Buch, Englisch, 226 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 580 g
Buch, Englisch, 226 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 580 g
Reihe: Digital Frontiers in Buildings and Infrastructure
ISBN: 978-1-032-90120-6
Verlag: Taylor & Francis Ltd
Structural Design and Optimization of Lifting Self-forming GFRP Elastic Gridshells Based on Machine Learning presents the algorithms of machine learning (ML) that can be used for the structural design and optimization of glass fiber reinforced polymer (GFRP) elastic gridshells, including linear regression, ridge regression, K-nearest neighbors, decision tree, random forest, AdaBoost, XGBoost, artificial neural network, support vector machine (SVM), and six enhanced forms of SVM. It also introduces interpretable ML approaches, including partial dependence plot, accumulated local effects, and SHaply additive exPlanations (SHAP). Also, several methods for developing ML algorithms, including K-fold cross-validation (CV), Taguchi, a technique for order preference by similarity to ideal solution (TOPSIS), and multi-objective particle swarm optimization (MOPSO), are proposed. These algorithms are implemented to improve the applications of gridshell structures using a comprehensive representation of ML models. This research introduces novel frameworks for shape prediction, form-finding, structural performance assessment, and shape optimization of lifting self-forming GFRP elastic gridshells using ML methods. This book will be of interest to researchers and academics interested in advanced design methods and ML technology in architecture, engineering, and construction fields.
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Architektur Architektur: Allgemeines
- Technische Wissenschaften Bauingenieurwesen Baukonstruktion, Baufachmaterialien
- Technische Wissenschaften Bauingenieurwesen Bauingenieurwesen
- Technische Wissenschaften Technik Allgemein Technik: Allgemeines
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Technische Informatik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Enzyklopädien, Nachschlagewerke, Wörterbücher
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
Weitere Infos & Material
Chapter 1 Introduction of GFRP Elastic Gridshell Structures and Machine Learning Chapter 2 A Review of GFRP Elastic Gridshell Structures and Machine Learning Algorithms Chapter 3 Shape Prediction of Slender Bars Based on Discrete Elements Chapter 4 Shape Prediction of GFRP Elastic Gridshells During Lifting Construction Chapter 5 Form-Finding of GFRP Elastic Gridshells During Lifting Construction Process Chapter 6 Structural Performance Assessment of GFRP Elastic Gridshells Chapter 7 Structural Optimization of GFRP Elastic Gridshells Chapter 8 Conclusions and Recommendations for Structural Design and Optimizations of Gridshell Structures