Ramamoorthi / Ghosh | Bayesian Nonparametrics | Buch | 978-1-4419-3044-6 | sack.de

Buch, Englisch, 308 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1010 g

Reihe: Springer Series in Statistics

Ramamoorthi / Ghosh

Bayesian Nonparametrics


1. Auflage. Softcover version of original hardcover Auflage 2003
ISBN: 978-1-4419-3044-6
Verlag: Springer

Buch, Englisch, 308 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1010 g

Reihe: Springer Series in Statistics

ISBN: 978-1-4419-3044-6
Verlag: Springer


Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticians in general because Bayesian nonparametrics offers a whole continuous spectrum of robust alternatives to purely parametric and purely nonparametric methods of classical statistics. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian nonparametrics. Though the emphasis of the book is on nonparametrics, there is a substantial chapter on asymptotics of classical Bayesian parametric models. Jayanta Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently professor of statistics at Purdue University. He has been editor of Sankhya and served on the editorial boards of several journals including the Annals of Statistics. Apart from Bayesian analysis, his interests include asymptotics, stochastic modeling, high dimensional model selection, reliability and survival analysis and bioinformatics. R.V. Ramamoorthi is professor at the Department of Statistics and Probability at Michigan State University. He has published papers in the areas of sufficiency invariance, comparison of experiments, nonparametric survival analysis and Bayesian analysis. In addition to Bayesian nonparametrics, he is currently interested in Bayesian networks and graphical models. He is on the editorial board of Sankhya.

Ramamoorthi / Ghosh Bayesian Nonparametrics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction: Why Bayesian Nonparametrics—An Overview and Summary.- Preliminaries and the Finite Dimensional Case.- M(?) and Priors on M(?).- Dirichlet and Polya tree process.- Consistency Theorems.- Density Estimation.- Inference for Location Parameter.- Regression Problems.- Uniform Distribution on Infinite-Dimensional Spaces.- Survival Analysis—Dirichlet Priors.- Neutral to the Right Priors.- Exercises.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.