Rao / Srinivasa / Reddy Design of Shape Memory Alloy (SMA) Actuators
2015
ISBN: 978-3-319-03188-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 130 Seiten, eBook
Reihe: Engineering
ISBN: 978-3-319-03188-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for different applications. The solid-solid, diffusionless phase transformations in thermally responsive SMA allows them to demonstrate unique characteristics like superelasticity and shape memory effects. The combined sensing and actuating capabilities of such materials allows them to provide a system level response by combining multiple functions in a single material system. In SMA, the combined mechanical and thermal loading effects influence the functionality of such materials.
The aim of this book is to make the analysis of these materials accessible to designers by developing a "strength of materials" approach to the analysis and design of such SMA components inspired from their various applications with a review of various factors influencing the design process for such materials.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Acknowledgments;9
3;Contents;10
4;1 Introduction to Shape Memory Alloys;13
4.1;1.1 Smart Materials--An Overview;13
4.2;1.2 Smart Structures---System Level Response;14
4.3;1.3 Shape Memory Alloys: Temperature Induced Phase Transformations;17
4.4;1.4 Shape Memory Effect and Superelasticity/Pseudoelasticity;20
4.5;1.5 Commonly Used Shape Memory Alloys;24
4.6;1.6 SMA Applications: Overview;27
4.6.1;1.6.1 Biomedical Applications;27
4.6.2;1.6.2 Civil Engineering Applications;31
4.6.3;1.6.3 Aerospace and Automotive Applications;35
4.6.4;1.6.4 Miscellaneous Applications;37
4.7;1.7 Chapter Summary;39
4.8;References;40
5;2 Need and Functionality Analysis;44
5.1;2.1 The System Design Process;46
5.1.1;2.1.1 Design Methodology: Structure and Guidelines;47
5.2;2.2 The Five Major Subsystems;49
5.3;2.3 How Do We Identify Need and Functionality for SMAs;51
5.4;References;52
6;3 Manufacturing and Post Treatment of SMA Components;53
6.1;3.1 Different Manufacturing Techniques;53
6.1.1;3.1.1 Vacuum Induction Melting (VIM) Technique;54
6.1.2;3.1.2 Vacuum Arc Remelting (VAR) Technique;55
6.1.3;3.1.3 Electronic Beam Melting (EBM) Technique;56
6.1.4;3.1.4 Conventional/Normal Sintering Technique;56
6.1.5;3.1.5 Selective Laser Sintering (SLS);57
6.1.6;3.1.6 Hot Isotactic Pressing (HIP);57
6.1.7;3.1.7 Spark Plasma Sintering (SPS);57
6.1.8;3.1.8 Selective Laser Melting (SLM);58
6.1.9;3.1.9 Metal Injection Molding (MLM);59
6.2;3.2 Post Treatment of SMAs;59
6.2.1;3.2.1 Machining of SMA Components;60
6.2.2;3.2.2 Surface Treatment of SMA Components;60
6.2.3;3.2.3 Annealing and Coldworking of SMA;62
6.2.4;3.2.4 Joining of SMA to Itself and Other Materials Like Stainless Steel;63
6.2.5;3.2.5 Shape Setting of Nitinol;65
6.3;References;69
7;4 Basic SMA Component Geometries and Responses;71
7.1;4.1 SMA Wire Response---Tensile Loading;71
7.2;4.2 SMA Wire Response---Torsional Loading;75
7.3;4.3 SMA Spring Response---Torsional Loading;77
7.4;References;81
8;5 Factors Influencing Design of SMA Actuators;82
8.1;5.1 Geometry Factors;82
8.2;5.2 Effect of Alloy Composition;84
8.3;5.3 Effect of Shape Setting Conditions for Custom Shape (Making SMA Springs);85
8.4;5.4 Effect of Operating Temperature on Mechanical Response;85
8.5;5.5 Effect of Loading Rates;86
8.6;5.6 Wire Training/Hysteresis Stabilization;87
8.7;References;88
9;6 Graphical Description of Temperature Controlled Actuation of SMA Wires;90
9.1;6.1 SMA Wire + Bias Spring Arrangement;90
9.1.1;6.1.1 SMA Wire Selection;90
9.1.2;6.1.2 Operating Temperature of SMA Wire;92
9.2;6.2 Graphical Design Approach for Stroke Estimation;92
9.2.1;6.2.1 Graphical Design Approach for Stroke Estimation---Load and Displacement Controlled Tests;94
9.2.2;6.2.2 SMA Wire + Bias Spring: Graphical Design Approach for Stroke Estimation Using Linearized Loading Response only;96
9.3;6.3 Case Study 2: Linear to Rotary Arrangement Using a SMA Wire + Bias Spring Arrangement Using Linearized Loading Response Only;97
9.4;6.4 Case Study 3: SMA Wire + Bias Spring Arrangement Using Linearized Loading---Unloading Response;102
9.5;6.5 Case Study 4: SMA Wire + Bias Spring Arrangement ƒ;105
9.6;References;106
10;7 Case Studies in the Preliminary Design of SMA Actuators;107
10.1;7.1 Different Modes of Operation;109
10.1.1;7.1.1 Constant Force Mode;109
10.1.2;7.1.2 Constant Deflection Mode;110
10.1.3;7.1.3 Simultaneous Force-Deflection Mode;110
10.2;7.2 Design of SMA Wires Under Constant Force;111
10.3;7.3 Case Study II: Design Procedure for Ti--Ni (SMA) Springs;113
10.4;7.4 Spring Design Case Study;113
10.4.1;7.4.1 Design Model and Assumptions;113
10.4.2;7.4.2 Terms Used in Design of SMA Springs;115
10.5;7.5 Example: Design of a Remote Controlled Flow Control Valve Using an SMA;116
10.5.1;7.5.1 Statement of Requirement;116
10.6;7.6 Extensional Spring Design;120
10.7;7.7 Heating and Cooling of Shape Memory Wires;121
10.7.1;7.7.1 Time Taken to Heat Up and Cool Down;122
10.8;References;123
11;8 Coupling SMA Actuators with Mechanisms: Principle of Virtual Work;124
11.1;8.1 The Need for Mechanisms;124
11.2;8.2 The Loading Curve and the SMA Response;127
11.3;8.3 3-D Design;130
11.4;8.4 Bias Forces;131
11.5;Reference;131
12;9 Fatigue of SMAs;132
12.1;9.1 Structural and Functional Fatigue in SMAs;132
12.2;9.2 Reporting Fatigue Data;135
12.3;References;136
Introduction to Shape Memory Alloys.- Production and processing of SMA components.- Need Analysis for Design of SMA components/structures.- Factors influencing design of SMA Actuators.- Stroke estimation.




