Buch, Englisch, 325 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 534 g
Buch, Englisch, 325 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 534 g
ISBN: 978-0-521-03691-7
Verlag: Cambridge University Press
First-passage properties underlie a wide range of stochastic processes, such as diffusion-limited growth, neuron firing and the triggering of stock options. This book provides a unified presentation of first-passage processes, which highlights its interrelations with electrostatics and the resulting powerful consequences. The author begins with a presentation of fundamental theory including the connection between the occupation and first-passage probabilities of a random walk, and the connection to electrostatics and current flows in resistor networks. The consequences of this theory are then developed for simple, illustrative geometries including the finite and semi-infinite intervals, fractal networks, spherical geometries and the wedge. Various applications are presented including neuron dynamics, self-organized criticality, diffusion-limited aggregation, the dynamics of spin systems and the kinetics of diffusion-controlled reactions. First-passage processes provide an appealing way for graduate students and researchers in physics, chemistry, theoretical biology, electrical engineering, chemical engineering, operations research and finance to understand all of these systems.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
Preface; Errata; 1. First-passage fundamentals; 2. First passage in an interval; 3. Semi-infinite system; 4. Illustrations of first passage in simple geometries; 5. Fractal and nonfractal networks; 6. Systems with spherical symmetry; 7. Wedge domains; 8. Applications to simple reactions; References; Index.