Reiter | Natural Language Generation | Buch | 978-3-031-68581-1 | sack.de

Buch, Englisch, 202 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g

Reiter

Natural Language Generation


2025
ISBN: 978-3-031-68581-1
Verlag: Springer Nature Switzerland

Buch, Englisch, 202 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g

ISBN: 978-3-031-68581-1
Verlag: Springer Nature Switzerland


In late 2022, the prominence of Natural Language Generation (NLG) surged with the advent of advanced language models like ChatGPT. While these developments have captivated both academic and commercial sectors, the focus has predominantly been on the latest innovations, often overlooking the rich history and foundational work in NLG. This book aims to provide a comprehensive overview of NLG, encompassing not only language models but also alternative approaches, user requirements, evaluation methods, safety and testing protocols, and practical applications. Drawing on decades of NLG research, the book is designed to be a valuable resource for both researchers and developers, offering insights that remain relevant far beyond the current technological landscape.

focuses on data-to-text but also looks at other types of NLG including text summarization.  The book takes a holistic approach to NLG, looking at requirements (what users are looking for), design, data issues, testing, evaluation, safety and ethical issues as well as technology.   The holistic approach is unique to this book and is very valuable for people building real-world NLG systems, and for academics and researchers who are interested in applied NLG.

The author, who previously co-authored a seminal NLG book in 2000, emphasizes high-level concepts and methodologies, ensuring the material's longevity and utility. The book is structured to balance technical depth with practical relevance, including chapters on rule-based and neural NLG approaches, user requirements, rigorous evaluation techniques, and safety considerations. Real-world applications, particularly in journalism, business intelligence, summarization, and medicine, are explored to illustrate NLG's potential and scalability. With personal anecdotes and examples from the author's experiences, this book provides a unique and engaging perspective on the evolving field of NLG, making it an indispensable guide for those looking to harness the power of language generation technologies.

Reiter Natural Language Generation jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction to NLG.- 2. Rule-based NLG.- 3. Machine Learning and Neural NLG.- 4. Requirements.- 5. Evaluation.- 6. Safety, testing, and maintenance.- 7. Applications.- Index.


Ehud Reiter is a Professor of Computing Science at the University of Aberdeen and had been Chief Scientist of Arria NLG (which he cofounded).  In both roles he works on Natural Language Generation.  He has been working on NLG since getting his PhD in NLG in 1990 (from Harvard), and is one of the most published and cited authors in the field.  He has over 200 academic papers and 8 patents.  He was chair of the Association for Computation Linguistics Special Interest Group in Generation (SIGGEN) from 2019-2022, and was awarded a Test of Time award for his NLG work in 2022.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.