Rekik / Valdés Hernández / Adeli | Predictive Intelligence in Medicine | Buch | 978-3-030-59353-7 | sack.de

Buch, Englisch, Band 12329, 212 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g

Reihe: Lecture Notes in Computer Science

Rekik / Valdés Hernández / Adeli

Predictive Intelligence in Medicine

Third International Workshop, PRIME 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-59353-7
Verlag: Springer International Publishing

Third International Workshop, PRIME 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings

Buch, Englisch, Band 12329, 212 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-59353-7
Verlag: Springer International Publishing


This book constitutes the proceedings of the Third International Workshop on Predictive Intelligence in Medicine, PRIME 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually due to the COVID-19 pandemic.

The 17 full and 2 short papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.

Rekik / Valdés Hernández / Adeli Predictive Intelligence in Medicine jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Context-Aware Synergetic Multiplex Network for Multi-Organ Segmentation of Cervical Cancer MRI.- Residual Embedding Similarity-Based Network Selection for Predicting Brain Network Evolution Trajectory from a Single Observation.- Adversarial Brain Multiplex Prediction From a Single Network for High-Order Connectional Gender-Specific Brain Mapping.- Learned deep radiomics for survival analysis with attention.- Robustification of Segmentation Models Against Adversarial Perturbations In Medical Imaging.- Joint Clinical Data and CT Image based Prognosis: A Case Study on Postoperative Pulmonary Venous Obstruction Prediction.- Low-Dose CT Denoising using Octave Convolution with High and Low Frequency bands.- Conditional Generative Adversarial Network for Predicting 3D Medical Images Affected by Alzheimer's Diseases.- Inpainting Cropped Diffusion MRI using Deep Generative Models.- Multi-View Brain HyperConnectome AutoEncoder For Brain State Classification.- Foreseeing Brain Graph EvolutionOver Time Using Deep Adversarial Network Normalizer.- Longitudinal prediction of anatomical changes of parotid glands.- Deep Parametric Mixtures for Modeling the Functional Connectome.- Deep EvoGraphNet Architecture For Time-Dependent Brain Graph Data Synthesis From a Single Timepoint.- Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction.- mr NST: Multi-Resolution and Multi-Reference Neural Style Transfer for Mammography.- Template-oriented Multi-task Sparse Low-rank Learning for Parkinson's Diseases Diagnosis.- Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant Chemotherapy Treatment.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.