Buch, Englisch, 114 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 3317 g
Reihe: Springer Theses
Applications in Magnet Design
Buch, Englisch, 114 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 3317 g
Reihe: Springer Theses
ISBN: 978-3-319-41293-1
Verlag: Springer
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau Konstruktionslehre, Bauelemente, CAD
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Naturwissenschaften Physik Quantenphysik Hochenergiephysik
Weitere Infos & Material
Introduction.- Magnetoquasistatic Approximation of Maxwell's Equations, Uncertainty
Quantification Principles.- Magnetoquasistatic Model and its Numerical Approximation.- Parametric Model, Continuity and First Order Sensitivity Analysis.- Uncertainty Quantification.- Uncertainty Quantification for Magnets.- Conclusion and Outlook.