Buch, Englisch, Band 135, 525 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 2070 g
Buch, Englisch, Band 135, 525 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 2070 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-0-387-72828-5
Verlag: Springer-Verlag GmbH
This graduate level textbook covers an especially broad range of topics. The book first offers a careful discussion of the basics of linear algebra. It then proceeds to a discussion of modules, emphasizing a comparison with vector spaces, and presents a thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory, culminating in the finite dimensional spectral theorem for normal operators. The new edition has been revised and contains a chapter on the QR decomposition, singular values and pseudoinverses, and a chapter on convexity, separation and positive solutions to linear systems.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Basic Linear Algebra.- Vector Spaces.- Linear Transformations.- The Isomorphism Theorems.- Modules I: Basic Properties.- Modules II: Free and Noetherian Modules.- Modules over a Principal Ideal Domain.- The Structure of a Linear Operator.- Eigenvalues and Eigenvectors.- Real and Complex Inner Product Spaces.- Structure Theory for Normal Operators.- Topics.- Metric Vector Spaces: The Theory of Bilinear Forms.- Metric Spaces.- Hilbert Spaces.- Tensor Products.- Positive Solutions to Linear Systems: Convexity and Separation.- Affine Geometry.- Singular Values and the Moore–Penrose Inverse.- An Introduction to Algebras.- The Umbral Calculus.




