Ruiz | The Basic Theory of Power Series | Buch | 978-3-528-06525-6 | sack.de

Buch, Englisch, 134 Seiten, Format (B × H): 162 mm x 229 mm, Gewicht: 241 g

Reihe: Advanced Lectures in Mathematics

Ruiz

The Basic Theory of Power Series


1993
ISBN: 978-3-528-06525-6
Verlag: Vieweg+Teubner Verlag

Buch, Englisch, 134 Seiten, Format (B × H): 162 mm x 229 mm, Gewicht: 241 g

Reihe: Advanced Lectures in Mathematics

ISBN: 978-3-528-06525-6
Verlag: Vieweg+Teubner Verlag


The aim of these notes is to cover the basic algebraic tools and results behind the scenes in the foundations of Real and Complex Analytic Geometry. The author has learned the subject through the works of many mathematicians, to all of whom he is indebted. However, as the reader will immediately realize, he was specially influenced by the writings of S.S. Abhyankar and J.-C. Tougeron. In any case, the presentation of all topics is always as elementary as it can possibly be, even at the cost of making some arguments longer. The background formally assumed consists of: 1) Polynomials: roots, factorization, discriminant; real roots, Sturm's Theorem, formally real fields; finite field extensions, Primitive Element Theorem. 2) Ideals and modules: prime and maximal ideals; Nakayama's Lemma; localiza­ tion. 3) Integral dependence: finite ring extensions and going-up. 4) Noetherian rings: primary decomposition, associated primes, Krull's Theorem. 5) Krull dimension: chains of prime ideals, systems of parameters; regular systems of parameters, regular rings. These topics are covered in most texts on Algebra and/or Commutative Algebra. Among them we choose here as general reference the following two: • M. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra, 1969, Addison-Wesley: Massachusetts; quoted [A-McD]. • S. Lang: Algebra, 1965, Addison-Wesley: Massachusetts; quoted [L].

Ruiz The Basic Theory of Power Series jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


I Power Series.- 1 Series of Real and Complex Numbers.- 2 Power Series.- 3 Rückert’s and Weierstrass’s Theorems.- II Analytic Rings and Formal Rings.- 1 Mather’s Preparation Theorem.- 2 Noether’s Projection Lemma.- 3 Abhyankar’s and Rückert’s Parametrization.- 4 Nagata’s Jacobian Criteria.- 5 Complexification.- III Normalization.- 1 Integral Closures.- 2 Normalization.- 3 Multiplicity in Dimension 1.- 4 Newton-Puiseux’s Theorem.- IV Nullstellensatze.- 1 Zero Sets and Zero Ideals.- 2 Rückert’s Complex Nullstellensatz.- 3 The Homomorphism Theorem.- 4 Risler’s Real Nullstellensatz.- 5 Hilbert’s 17th Problem.- V Approximation Theory.- 1 Tougeron’s Implicit Functions Theorem.- 2 Equivalence of Power Series.- 3 M. Artin’s Approximation Theorem.- 4 Formal Completion of Analytic Rings.- 5 Nash Rings.- VI Local Algebraic Rings.- 1 Local Algebraic Rings.- 2 Chevalley’s Theorem.- 3 Zariski’s Main Theorem.- 4 Normalization and Completion.- 5 Efroymson’s Theorem.- Bibliographical Note.


Dr. Jésus M. Ruiz ist Professor für Mathematik am Institut für Geometrie und Topologie an der Universität Complutense de Madrid.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.