Sabin | Analysis and Design of Univariate Subdivision Schemes | Buch | 978-3-642-26449-8 | sack.de

Buch, Englisch, 218 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Geometry and Computing

Sabin

Analysis and Design of Univariate Subdivision Schemes


2010
ISBN: 978-3-642-26449-8
Verlag: Springer

Buch, Englisch, 218 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Reihe: Geometry and Computing

ISBN: 978-3-642-26449-8
Verlag: Springer


‘Subdivision’ is a way of representing smooth shapes in a computer. A curve or surface (both of which contain an in?nite number of points) is described in terms of two objects. One object is a sequence of vertices, which we visualise as a polygon, for curves, or a network of vertices, which we visualise by drawing the edges or faces of the network, for surfaces. The other object is a set of rules for making denser sequences or networks. When applied repeatedly, the denser and denser sequences are claimed to converge to a limit, which is the curve or surface that we want to represent. This book focusses on curves, because the theory for that is complete enough that a book claiming that our understanding is complete is exactly what is needed to stimulate research proving that claim wrong. Also because there are already a number of good books on subdivision surfaces. The way in which the limit curve relates to the polygon, and a lot of interesting properties of the limit curve, depend on the set of rules, and this book is about how one can deduce those properties from the set of rules, and how one can then use that understanding to construct rules which give the properties that one wants.

Sabin Analysis and Design of Univariate Subdivision Schemes jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Prependices.- Functions and Curves.- Differences.- B-Splines.- Eigenfactorisation.- Enclosures.- Hölder Continuity.- Matrix Norms.- Joint Spectral Radius.- Radix Notation.- z-transforms.- Dramatis Personae.- An introduction to some regularly-appearing characters.- Analyses.- Support.- Enclosure.- Continuity 1 - at Support Ends.- Continuity 2 - Eigenanalysis.- Continuity 3 - Difference Schemes.- Continuity 4 - Difference Eigenanalysis.- Continuity 5 - the Joint Spectral Radius.- What Converges ?.- Reproduction of Polynomials.- Artifacts.- Normalisation of Schemes.- Summary of Analysis Results.- Design.- The Design Space.- Linear Subspaces of the Design Space.- Non-linear Conditions.- Non-Stationary Schemes.- Geometry Sensitive Schemes.- Implementation.- Making Polygons.- Rendering.- Interrogation.- End Conditions.- Modifying the Original Polygon.- Appendices.- Proofs.- Historical Notes.- Solutions to Exercises.- Coda.


The author has spent his professional life on the numerical representation of shape.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.