Sadasivuni / Ponnamma / Rajan | Polymer Nanocomposites in Biomedical Engineering | E-Book | www.sack.de
E-Book

E-Book, Englisch, 413 Seiten

Reihe: Engineering (R0)

Sadasivuni / Ponnamma / Rajan Polymer Nanocomposites in Biomedical Engineering


1. Auflage 2019
ISBN: 978-3-030-04741-2
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 413 Seiten

Reihe: Engineering (R0)

ISBN: 978-3-030-04741-2
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. 
The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible. 

Sadasivuni / Ponnamma / Rajan Polymer Nanocomposites in Biomedical Engineering jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;9
3;1 A Fundamental Approach Toward Polymers and Polymer Composites: Current Trends for Biomedical Applications;11
3.1;Abstract;11
3.2;1 Introduction;11
3.3;2 Polymers;13
3.3.1;2.1 Classification of Polymers;13
3.3.2;2.2 Natural Polymer and Their Composites for Biomedical Applications;13
3.3.2.1;2.2.1 Collagen;13
3.3.2.2;2.2.2 Silk;14
3.3.2.3;2.2.3 Hyaluronic Acid (HA);15
3.3.2.4;2.2.4 Chitosan (CS);16
3.3.2.5;2.2.5 Cellulose;16
3.3.2.6;2.2.6 Alginate;18
3.3.3;2.3 Synthetic Polymers and Their Composites for Biomedical Applications;19
3.3.3.1;2.3.1 Polycaprolactone (PCL);19
3.3.3.2;2.3.2 Poly(Methyl Methacrylate) (PMMA);20
3.3.3.3;2.3.3 Poly(l-Lactic Acid) (PLLA);21
3.3.3.4;2.3.4 Poly(Lactic-Co-Glycolic) Acid (PLGA);21
3.3.3.5;2.3.5 Poly(Ethylene Glycol) (PEG);22
3.3.3.6;2.3.6 Polystyrene (PS);23
3.3.3.7;2.3.7 Polyvinylidene Fluoride (PVDF);25
3.3.4;2.4 Gas Permeable Polymeric Membranes for Biomedical Applications;26
3.3.5;2.5 Other Polymeric Composites for Biomedical Applications;28
3.3.6;2.6 Polymer Microarrays for Biomedical Applications;30
3.3.7;2.7 Challenges and Future Prospective;32
3.3.8;2.8 Conclusion;32
3.4;Acknowledgements;32
3.5;References;33
4;2 Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges;39
4.1;Abstract;39
4.2;1 Introduction;39
4.2.1;1.1 Polymer Composites;40
4.2.2;1.2 Bio-based Materials;41
4.3;2 Fabrication/Processing of Bio-based Polymer Composites;41
4.3.1;2.1 Thermoplastic-Based Composites;42
4.3.1.1;2.1.1 Injection Molding;43
4.3.1.2;2.1.2 Extrusion;44
4.3.2;2.2 Thermoset-Based Composites;45
4.3.2.1;2.2.1 Injection Molding;45
4.3.2.2;2.2.2 Compression Molding;45
4.3.2.3;2.2.3 Transfer Molding;46
4.3.3;2.3 Bio-based Composites;47
4.3.3.1;2.3.1 Solvent Casting and Particulate Leaching (SCPL);47
4.3.3.2;2.3.2 Emulsion Freeze Drying;48
4.3.3.3;2.3.3 Electrospinning;49
4.3.3.4;2.3.4 Blow Film Extrusion;50
4.3.3.5;2.3.5 3D Printing;50
4.4;3 Fillers and Reinforcements Used in the Preparation of Bio-based Composites;51
4.4.1;3.1 Bio-based Fillers/Reinforcements with Non-bio-based Polymers;51
4.4.2;3.2 Non-bio-based Fillers/Reinforcements with Bio-based Polymers;53
4.4.3;3.3 Bio-based Filler/Reinforcement and Bio-based Polymer;53
4.5;4 Properties of Bio-based Polymer Composites Used for Biomedical Applications;56
4.6;5 Challenges Encountered in the Design of Novel Bio-based Polymer Composites for Biomedical Applications;58
4.6.1;5.1 Desired Properties for Biomedical Materials;58
4.6.2;5.2 Challenges Faced by Bio-based Materials;59
4.7;6 Conclusion;59
4.8;References;60
5;3 Amorphous and Semicrystalline Thermoplastic Polymer Nanocomposites Applied in Biomedical Engineering;66
5.1;Abstract;66
5.2;1 Introduction;66
5.3;2 Processing of the Amorphous and the Semicrystalline Thermoplastic Nanocomposites;69
5.3.1;2.1 Template Synthesis (Sol–Gel Technology);69
5.3.2;2.2 Intercalation Methods;70
5.3.2.1;2.2.1 Solution Intercalation Method;71
5.3.2.2;2.2.2 In Situ Intercalative Polymerization Method;72
5.3.2.3;2.2.3 Melt Intercalation Method;72
5.4;3 Examples of the Polymers Used in Biomedical Engineering;73
5.4.1;3.1 Amorphous Polymers;73
5.4.1.1;3.1.1 Polycarbonate (PC);73
5.4.1.2;3.1.2 Rubber Nanocomposites;74
5.4.2;3.2 Thermoplastic Polyurethane (TPU);74
5.4.2.1;3.2.1 Polystyrene (PS);74
5.4.2.2;3.2.2 Polyvinylidene Difluoride (PVDF);75
5.4.3;3.3 Semicrystalline Polymers;75
5.4.3.1;3.3.1 Polyethylene (PE);76
5.4.3.2;3.3.2 Polypropylene (PP);76
5.4.3.3;3.3.3 Polyamide (PA);76
5.4.4;3.4 Polymer–Clay Nanocomposites Types;77
5.4.4.1;3.4.1 Polyurethane–Urea (PUU);78
5.5;4 Nanoscale Reinforcements in the Polymer Nanocomposites;78
5.5.1;4.1 Carbon Nanotubes (CNTs);79
5.5.2;4.2 Graphene;79
5.5.3;4.3 Nanoclays;80
5.6;5 Polymer Nanocomposites in Biomedical Applications;80
5.6.1;5.1 Scaffold Tissue Engineering;82
5.6.2;5.2 Drug Delivery;84
5.6.3;5.3 Dental Implants;85
5.6.4;5.4 Polymer Nanocomposites as Biosensors;86
5.7;6 Conclusions;87
5.8;References;87
6;4 Multi-functional Lipid-Based Polymer Composites for In Vivo Imaging, Tissue Healing, Cell Rejuvenation and Theranostic Applications;94
6.1;Abstract;94
6.2;1 Introduction;94
6.3;2 Classification of Lipids;95
6.3.1;2.1 Fatty Acids;95
6.3.2;2.2 Phospholipids;96
6.3.3;2.3 Glycerolipids;96
6.3.4;2.4 Glycerophospholipids;97
6.3.5;2.5 Sphingolipids;97
6.3.6;2.6 Sterol Lipids;98
6.3.7;2.7 Prenol Lipids;98
6.3.8;2.8 Saccharolipids;98
6.3.9;2.9 Galactolipids and Sulfolipids;98
6.3.10;2.10 Polyketides;99
6.3.11;2.11 Lipoproteins;99
6.3.12;2.12 Liposomes;99
6.3.12.1;2.12.1 Preparation Methods;100
6.3.12.2;2.12.2 Formulation and Functionalization;100
6.3.13;2.13 Cubosomes;101
6.3.14;2.14 Hexosomes;102
6.3.15;2.15 Lipoplexes and Polyplexes;102
6.3.16;2.16 Tubules;102
6.3.17;2.17 Ribbons;103
6.3.18;2.18 Cochleates;103
6.4;3 Lipid Functionalization with Polymeric Materials;104
6.5;4 Characterization of Lipid-Based Polymers;105
6.6;5 Applications of Lipid-Based Polymer;106
6.6.1;5.1 Cell Rejuvenation and Tissue Engineering;106
6.6.1.1;5.1.1 Combining Liposomes with Scaffolds;106
6.6.1.2;5.1.2 Growth/Differentiation Factor Delivery;108
6.6.1.3;5.1.3 Therapeutic Gene Delivery;109
6.6.1.4;5.1.4 Magnetite Cationic Liposomes;110
6.6.2;5.2 In Vivo Imaging Applications;110
6.6.2.1;5.2.1 Liposomes as Nanocarriers of Imaging Agents;111
6.6.2.1.1;Fluorescence Imaging;111
6.6.2.1.2;Magnetic Resonance Imaging (MRI);112
6.6.2.1.3;Ultrasound Imaging;112
6.6.2.1.4;Nuclear Imaging;113
6.7;6 Concluding Remarks;113
6.8;References;114
7;5 Biomedical Applications of Electrospun Polymer Composite Nanofibres;119
7.1;Abstract;119
7.2;1 Introduction;120
7.3;2 Biomedical Applications of Various Polymer-Based Electrospun Composite Nanofibers;126
7.3.1;2.1 Biomedical Applications of Polyvinyl Alcohol-Based Electrospun Composite Nanofibers;126
7.3.2;2.2 Biomedical Applications of Polylactic Acid-Based Electrospun Composite Nanofibers;130
7.3.3;2.3 Biomedical Applications of Polyglycolic Acid-Based Electrospun Composite Nanofibers;137
7.3.4;2.4 Biomedical Applications of Polylactic-co-Glycolic Acid-Based Electrospun Composite Nanofibers;139
7.3.5;2.5 Biomedical Applications of Polycaprolactone-Based Electrospun Composite Nanofibers;145
7.3.6;2.6 Biomedical Applications of Polyethylene Glycol-Based Electrospun Composite Nanofibers;147
7.3.7;2.7 Biomedical Applications of Polyurethane-Based Electrospun Composite Nanofibers;150
7.3.8;2.8 Biomedical Applications of Polyethyleneimine-Based Electrospun Composite Nanofibers;153
7.3.9;2.9 Biomedical Applications of Polypyrrole-Based Electrospun Composite Nanofibers;154
7.3.10;2.10 Biomedical Applications of Polyaniline-Based Electrospun Composite Nanofibers;158
7.3.11;2.11 Biomedical Applications of Poly(3,4-ethylenedioxythiophene)-Based Electrospun Composite Nanofibers;160
7.4;3 Conclusions;162
7.5;References;163
8;6 Biomedical Applications of Hydroxyapatite Nanocomposites;174
8.1;Abstract;174
8.2;1 Introduction;175
8.3;2 Established Hydroxyapatite Nanocomposite Information;176
8.4;3 Classification of HA Nanocomposite;178
8.4.1;3.1 Polymer-Based Nanocomposites;179
8.4.1.1;3.1.1 Biopolymers Based HA Nanaocomposites;179
8.4.1.2;3.1.2 Synthetic Polymers-Based HA Nanocomposites;180
8.4.1.3;3.1.3 Hybrids-Based HA Nanocomposites;180
8.5;4 Applications of Hydroxyapatite Nanocomposites;180
8.5.1;4.1 Tissue Engineering Applications;180
8.5.1.1;4.1.1 Biopolymer-Based HA Nanocomposites;181
8.5.1.2;4.1.2 Synthetic Polymer-Based HA Nanocomposite;184
8.5.1.3;4.1.3 Hybrids Polymer-Based HA Nanocomposite;187
8.5.1.4;4.1.4 Miscellaneous Nanocomposites;187
8.5.2;4.2 Applications of HA Nanocomposites as Drug Delivery Systems;188
8.5.2.1;4.2.1 Biopolymer-Based HA Nanocomposite;188
8.5.2.2;4.2.2 Synthetic Polymer-Based HA Nanocomposite;191
8.5.2.3;4.2.3 Hybrids Polymer-Based HA Nanocomposite;192
8.5.2.4;4.2.4 Miscellaneous Nanocomposites;192
8.5.3;4.3 Applications of HA Nanocomposites as Gene Carriers;194
8.5.3.1;4.3.1 Biopolymer-Based HA Nanocomposite;194
8.5.3.2;4.3.2 Synthetic Polymer-Based HA Nanocomposite;196
8.5.3.3;4.3.3 Hybrids Polymer-Based HA Nanocomposites;196
8.5.3.4;4.3.4 Miscellaneous Nanocomposites;197
8.5.4;4.4 Application of HA Nanocomposites for Photodynamic Therapy;197
8.5.4.1;4.4.1 Biopolymer-Based HA Nanocomposite;198
8.5.4.2;4.4.2 Synthetic Polymer-Based HA Nanocomposite;199
8.5.4.3;4.4.3 Hybrids-Based HA Nanocomposites;199
8.5.4.4;4.4.4 Miscellaneous Nanocomposites;202
8.6;5 Concluding Remarks;202
8.7;References;203
9;7 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations;212
9.1;Abstract;212
9.2;1 Evolution of 3D Printing;214
9.3;2 Concept of 3D Organ-Printing Technology;214
9.4;3 Methods in Bioprinting—A Brief Description;215
9.5;4 Approaches for 3D Bioprinting;215
9.5.1;4.1 Biomimicry;216
9.5.2;4.2 Autonomous Self-assembly;216
9.5.3;4.3 Mini-Tissues;216
9.6;5 Tissue Bioprinting Strategies;217
9.6.1;5.1 Inkjet Bioprinting;217
9.6.1.1;5.1.1 Thermal Inkjet Printers;218
9.6.1.2;5.1.2 Piezoelectric Inkjet Printers;218
9.6.2;5.2 Micro-Extrusion Bioprinting;219
9.6.3;5.3 Laser-Assisted Bioprinting;220
9.7;6 Polymers with Biomedical Compatibility;220
9.8;7 Hydrogels;221
9.8.1;7.1 Classification of Hydrogels;222
9.8.1.1;7.1.1 Physical Cross-Linkage Hydrogels;224
9.8.1.2;7.1.2 Chemical Cross-Linkage Hydrogels;225
9.8.2;7.2 Hydrogels Classified Under Physical Properties;227
9.8.2.1;7.2.1 Solid Hydrogels;227
9.8.2.2;7.2.2 Semi-solid Hydrogels;227
9.8.2.3;7.2.3 Liquid Hydrogels;228
9.8.3;7.3 Role of Hydrogels in Biomedical Applications;228
9.9;8 Need for Polymeric Hydrogels;229
9.9.1;8.1 Polymeric Hydrogels in Biomedical Applications;229
9.9.2;8.2 Hydrogels for Skin Bioprinting;230
9.9.3;8.3 Hydrogels in Tissue Regeneration;230
9.10;9 Different Approaches for Tissue Engineering;232
9.11;10 Selection of Bioinks;233
9.12;11 Advantage of 3D Printing Technology;234
9.13;12 Conclusions;235
9.14;References;235
10;8 Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery;241
10.1;Abstract;241
10.2;1 Introduction;241
10.3;2 Cancer;243
10.3.1;2.1 Polymer Composite for Drug Delivery System;244
10.3.2;2.2 Polymer Composite Properties;244
10.3.3;2.3 Polymeric Composite Degradation;245
10.3.4;2.4 DDRM of Polymer Composites;246
10.4;3 Polymeric Nanocarrier for Cancer Chemotherapy;247
10.4.1;3.1 Designing Material;247
10.4.2;3.2 Drugs for Cancer Therapy;248
10.4.3;3.3 Polymer Composite Needs for Cancer Therapies;248
10.4.4;3.4 Important Requirement of Nanostructured Drug Delivery System;250
10.4.5;3.5 Site-Specific Release of Anticancer Drug;252
10.5;4 Osteogenesis;254
10.5.1;4.1 Types of Ossification;254
10.5.2;4.2 Intramembranous Ossification Process;255
10.5.3;4.3 Endochondral Ossification Process;255
10.5.4;4.4 Stem Cells for Osteogenesis;256
10.5.5;4.5 Morphology of Stem Cells;256
10.5.6;4.6 Environment for Osteogenesis;257
10.5.7;4.7 Polymer Composites for Osteogenesis: An Overview;257
10.5.8;4.8 Polymer Composite for Stem Cell Augmentation;257
10.6;5 Central Nervous System Drug Delivery;260
10.6.1;5.1 Receptor-Mediated Transcytosis;261
10.6.2;5.2 The Role of Other Barriers;261
10.6.3;5.3 Nanoparticles Based Drug Delivery;262
10.6.4;5.4 Stimuli-Responsive Nanocarriers;263
10.6.4.1;5.4.1 Intrinsic Stimuli-Responsive Nanocarriers;263
10.6.4.2;5.4.2 pH-Responsive Nanocarriers;264
10.6.4.3;5.4.3 Enzyme-Responsive Nanocarriers;264
10.6.4.4;5.4.4 Redox-Responsive Nanocarriers;264
10.6.5;5.5 External Stimuli-Responsive Nanocarriers;264
10.6.5.1;5.5.1 Magnetically Responsive Nanocarriers;264
10.6.5.2;5.5.2 Light-Responsive Nanocarriers;265
10.6.5.3;5.5.3 Multifunctionally Responsive Nanocarriers;265
10.6.6;5.6 Polymer Micelles;265
10.6.7;5.7 Injectable Hydrogels;265
10.6.8;5.8 General Strategies for Crossing the BBB Through Polymeric NanoParticles;266
10.6.8.1;5.8.1 Role of Surface Charge;266
10.6.8.2;5.8.2 Role of Size;267
10.6.8.3;5.8.3 Role of Surface Modification;267
10.7;6 Conclusion;267
10.8;References;268
11;9 Photopolymerization of Polymeric Composites in Drug Delivery, Tissue Engineering, and Other Biomedical Applications;277
11.1;Abstract;277
11.2;1 Introduction;277
11.3;2 Photoinitiators: Modes of Action and Classifications;279
11.3.1;2.1 Classes of Photoinitiators;280
11.4;3 Biocompatibility of Photoinitiation System;283
11.5;4 Acrylates and Methacrylates-Based Photo-Curable Polymeric Matrices;285
11.6;5 Forms, Pharmaceutical, and Biomedical Applications of Photo-cross-linked Polymers;288
11.6.1;5.1 Photo-cross-linked Hydrogels;289
11.6.2;5.2 Photo-cross-linked Biodegradable Elastomers;291
11.6.3;5.3 Other Biomedical Applications;293
11.6.3.1;5.3.1 Tissue Engineering;293
11.6.3.2;5.3.2 Cell Encapsulation;295
11.6.3.3;5.3.3 Therapeutic Protein Delivery;296
11.6.3.4;5.3.4 Genes Delivery;297
11.6.3.5;5.3.5 Drug Delivery of Small Molecules;297
11.7;6 Conclusion;298
11.8;References;298
12;10 Shape Memory Polymer Composites in Biomedical Field;304
12.1;Abstract;304
12.2;1 Introduction;304
12.3;2 Shape Memory Polymers;307
12.4;3 Designing Aspects of Shape Memory Polymers;308
12.4.1;3.1 Mechanical Properties;309
12.4.2;3.2 Biocompatibility;311
12.4.2.1;3.2.1 Cytotoxicity;312
12.4.2.1.1;Mitochondrial Activity;313
12.4.2.1.2;Membrane Damage;314
12.4.2.1.3;Cytokines Production;314
12.4.3;3.3 Hemocompatibility;315
12.4.4;3.4 Genotoxicity;316
12.4.5;3.5 Histocompatibility;317
12.4.6;3.6 Biodegradability;318
12.4.7;3.7 Sterilizability;319
12.5;4 Shape Memory Polymers in the Biomedical Field;320
12.6;5 Electro-active Shape Memory Polymer Composites;324
12.6.1;5.1 Shape Memory Polymers Containing Metallic (Ni) Fillers;324
12.6.2;5.2 Shape Memory Polymer Containing Electromagnetic Filler;324
12.6.3;5.3 Shape Memory Polymer Containing CNTs as Filler;325
12.7;6 Biomedical Applications of SMPs;325
12.8;7 Conclusions;330
12.9;References;331
13;11 Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications;335
13.1;Abstract;335
13.2;1 Introduction;336
13.2.1;1.1 Types of Nanocomposites;337
13.2.1.1;1.1.1 Ceramic Matrix Nanocomposites;337
13.2.1.2;1.1.2 Metal Matrix Nanocomposites;337
13.2.1.3;1.1.3 Polymer Nanocomposites;337
13.2.1.4;1.1.4 Polymer/Silver Nanocomposites;338
13.3;2 Methods of Synthesis;339
13.3.1;2.1 Synthesis of Silver Nanoparticles;339
13.3.2;2.2 Microwave Synthesis and Related Properties of Silver Nanoparticles Synthesis;341
13.3.3;2.3 Synthesis of Polymer/Silver Nanocomposites;342
13.3.3.1;2.3.1 In Situ Polymerization;342
13.3.3.2;2.3.2 Ex Situ Polymerization;344
13.4;3 Applications of Polymer/Silver Nanocomposites;345
13.4.1;3.1 Biomedical Applications;345
13.4.1.1;3.1.1 Antibacterial Agent;347
13.4.1.2;3.1.2 Antifungal Agent;349
13.4.1.3;3.1.3 Antiviral Agent;349
13.4.1.4;3.1.4 Antimicrobial Catheters;350
13.4.1.5;3.1.5 Antimicrobial Therapeutic Gel;350
13.4.2;3.2 Clinical Fabrics;351
13.4.3;3.3 Cancer Therapy;351
13.4.4;3.4 Biological Assays;351
13.4.5;3.5 Protein Detection;352
13.4.6;3.6 Other Miscellaneous Applications;352
13.5;4 Polymer-/AgNP-Based EMI Shielding;353
13.6;5 Polymer-/AgNP-Based Supercapacitor;356
13.7;6 Polymer-/AgNP-Based Fuel Cells;361
13.8;7 Polymer-/AgNP-Based Sensors;367
13.9;8 Conclusion;369
13.10;Acknowledgements;370
13.11;References;370
14;12 Electrospun Polymeric Nanofibers: Fundamental Aspects of Electrospinning Processes, Optimization of Electrospinning Parameters, Properties, and Applications;378
14.1;Abstract;378
14.2;1 Introduction;379
14.3;2 Electrospinning Process;383
14.3.1;2.1 Fundamental Aspects;383
14.3.2;2.2 Effect of Optimization Parameters on Electrospinning Process;386
14.3.2.1;2.2.1 Effect of Solvent;387
14.3.2.2;2.2.2 Effect of Polymer Concentration and Solution Viscosity;387
14.3.2.3;2.2.3 Effect of Solution Conductivity;389
14.3.2.4;2.2.4 Effect of Solution Flow Rate;389
14.3.2.5;2.2.5 Effect of Applied Voltage;389
14.3.2.6;2.2.6 Effect of Needle-Tip-to-Collector Distance and Needle Diameter;390
14.3.2.7;2.2.7 Effect of Relative Humidity and Temperature;390
14.3.3;2.3 Properties of Electrospun Nanofibers;390
14.4;3 Biomedical Applications of Electrospun Nanofibers;391
14.4.1;3.1 Tissue Engineering Applications;391
14.4.2;3.2 Drug Delivery Applications;398
14.4.3;3.3 Wound-Dressing Applications;402
14.5;4 Conclusions;407
14.6;References;408
15;Correction to: Polymer Nanocompositesin Biomedical Engineering;413



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.