E-Book, Englisch, 474 Seiten, Web PDF
Sakai / Mohri / Borisy Biological Functions of Microtubules and Related Structures
1. Auflage 2013
ISBN: 978-1-4832-7220-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 474 Seiten, Web PDF
ISBN: 978-1-4832-7220-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Biological Functions of Microtubules and Related Structures is a compendium of papers presented at the 13th Oji International Seminar on The Biological Functions of Microtubules and Related Structures, held at Komaba Eminence in Tokyo in November, 1981. The papers discuss the molecular function of tubulin in various biological processes or events. The book is divided into six sections focusing on the various aspects of the functions and structures of microtubules -- the biochemistry and molecular biology of tubulin, including regulation of microtubule assembly; microtubule-dynein systems and other proteins in cell motility; microtubules and related proteins in mitosis; the interactions of cytoskeletal components; the cytoskeleton; and microtubules in membrane functions and transport. Biochemists, biologists, and molecular biologists will find the book interesting.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Biological Functions of Microtubules and Related Structures;4
3;Copyright Page;5
4;Table of Contnets;6
5;Contributors;10
6;Preface;16
7;Acknowledgments;18
8;PART I: TUBULIN AND MICROTUBULES; BIOCHEMISTRY, MOLECULAR BIOLOGY, AND REGULATION OF ASSEMBLY;22
8.1;CHAPTER 1. TUBULIN AND TUBULIN ASSOCIATED CDR-LIKE PROTEIN FROM AZUKI BEAN EPICOTYLS;22
8.1.1;MATERIALS AND METHODS;23
8.1.2;RESULTS;24
8.1.3;DISCUSSION;29
8.1.4;REFERENCES;31
8.2;CHAPTER 2. PURIFICATION AND PROPERTIES OF MICROTUBULE-ASSOCIATED ATPASES FROM BOVINE BRAIN;32
8.2.1;I. INTRODUCTION;32
8.2.2;II. PARTIAL PURIFICATION OF MICROTUBULE-ASSOCIATED ATPASES FROM BOVINE BRAIN;33
8.2.3;III. SOME PROPERTIES OF ATPases I AND II;35
8.2.4;IV. DISCUSSION;41
8.2.5;V. SUMMARY;42
8.2.6;REFERENCES;42
8.3;CHAPTER 3. FRACTIONATION AND ELECTROPHORETIC ANALYSIS OF MICROTUBULE PROTEINS FROM RAT BRAIN;44
8.3.1;I. INTRODUCTION;44
8.3.2;II. FRACTIONATION AND ELECTROPHORETIC ANALYSIS OF MICROTUBULE PROTEINS;44
8.3.3;III. DISCUSSION;50
8.3.4;REFERENCES;51
8.4;CHAPTER 4. DETECTION OF TUBULIN GENES IN YEASTS;54
8.4.1;I. INTRODUCTION;54
8.4.2;II. MATERIALS AND METHODS;55
8.4.3;III. RESULTS AND DISCUSSION;56
8.4.4;ACKNOWLEDGMENTS;59
8.4.5;REFERENCES;60
8.5;CHAPTER 5. FLEXURAL RIGIDITY OF SINGLET MICROTUBULES ESTIMATED FROM STATISTICAL ANALYSIS OF FLUCTUATING IMAGES;62
8.5.1;I. INTRODUCTION;62
8.5.2;II. MATERIALS AND METHODS;63
8.5.3;III. RESULTS AND DISCUSSION;66
8.5.4;ACKNOWLEDGMENT;68
8.5.5;REFERENCES;68
8.6;CHAPTER 6. EVALUATION OF POTENTIAL ROLES FOR GDP IN MICROTUBULE ASSEMBLY AND DISASSEMBLY;70
8.6.1;I. INTRODUCTION;70
8.6.2;II. RESULTS AND DISCUSSION;71
8.6.3;III. CONCLUDING REMARKS;80
8.6.4;ACKNOWLEDGMENTS;80
8.6.5;REFERENCES;80
8.7;CHAPTER 7. INTERACTION OF VINBLASTINE WITH STEADY-STATE MICROTUBULES IN VITRO: MECHANISM OF INHIBITION OF NET TUBULIN ADDITION TO ASSEMBLY ENDS;82
8.7.1;I. INTRODUCTION;82
8.7.2;II. MATERIALS AND METHODS;84
8.7.3;III. RESULTS;84
8.7.4;IV. DISCUSSION;89
8.7.5;ACKNOWLEDGMENTS;91
8.7.6;REFERENCES;91
8.8;CHAPTER 8. QUANTITATIVE ANALYSIS OF ASSOCIATION OF CALMODULIN WITH TUBULIN;94
8.8.1;INTRODUCTION;94
8.8.2;I. QUALITATIVE EVIDENCE OF THE BINDING BETWEEN CALMODULIN AND TUBULIN;95
8.8.3;II. QUANTITATIVE ANALYSIS OF THE BINDING BETWEEN CALMODULIN AND TUBULIN;97
8.8.4;III. CALMODULIN–INDUCED INHIBITION OF TUBULIN POLYMERIZATION;100
8.8.5;IV. CONCLUSION;101
8.8.6;REFERENCES;102
8.9;CHAPTER 9. Ca2+ - AND CALMODULIN-DEPENDENT FLIP–FLOP MECHANISM IN THE REGULATION OF MICROTUBULE ASSEMBLY–DISASSEMBLY.;104
8.9.1;I. INTRODUCTION;104
8.9.2;II. TAU FACTOR IS A CALMODULIN-BINDING PROTEIN;105
8.9.3;III. RECONSTITUTION OF Ca2+ -SENSITIVE MICROTUBULE ASSEMBLY SYSTEM WITH TUBULIN, TAU FACTOR AND CALMODULIN;108
8.9.4;IV. CONCLUSION;109
8.9.5;ACKNOWLEDGEMENT;110
8.9.6;REFERENCES;110
9;PART II: DYNEIN, MICROTUBULES, AND OTHER PROTEINS IN CELL MOTILITY;112
9.1;CHAPTER 10. INTRA-AXOPODIAL PARTICLE MOVEMENT AND AXOPODIAL SURFACE MOTILITY IN Echinosphaerium akamae;112
9.1.1;I. INTRODUCTION;112
9.1.2;II. MATERIALS AND METHODS;113
9.1.3;III. RESULTS;113
9.1.4;IV. DISCUSSION;119
9.1.5;V. SUMMARY;123
9.1.6;ACKNOWLEDGMENTS;123
9.1.7;REFERENCES;123
9.2;CHAPTER 11. RAPID CONTRACTION OF THE MICROTUBULE-CONTAINING AXOPODIA IN A LARGE HELIOZOAN ECHINOSPHAERIUM;126
9.2.1;I. INTRODUCTION;126
9.2.2;II. MATERIALS AND METHODS;127
9.2.3;III. RESULTS AND DISCUSSION;128
9.2.4;IV. SUMMARY;135
9.2.5;REFERENCES;135
9.3;CHAPTER 12. CALMODULIN IN THE CILIA OF TETRAHYMENA;136
9.3.1;I. DIRECT EVIDENCE FOR THE OCCURRENCE OF CALMODULIN IN TETRAHYMENA CILIA;136
9.3.2;II. DISTRIBUTIONS OF CALMODULIN AND ITS COUNTERPART WITHIN TETRAHYMENA CILIUM;138
9.3.3;III. EFFECT OF CALMODULIN-INHIBITORS ON CILIARY MOVEMENT;140
9.3.4;IV. EVIDENCE SUGGESTING THE OCCURRENCE OF ANOTHER CALCIUM BINDING PROTEIN IN TETRAHYMENA CILIA;141
9.3.5;V. CONCLUDING REMARKS;143
9.3.6;REFERENCES;144
9.4;CHAPTER 13. MOLECULAR COMPOSITION AND STRUCTURE OF DYNEIN ARMS;146
9.4.1;I. MORPHOLOGY OF DYNEIN ARMS BOUND TO DOUBLET MICROTUBULES;147
9.4.2;II. MORPHOLOGY OF 21S DYNEIN ISOLATED FROM AXONEMES;150
9.4.3;III. SUBSTRUCTURE OF 21S DYNEIN;152
9.4.4;ACKNOWLEDGMENTS;155
9.4.5;REFERENCES;155
9.5;CHAPTER 14. DYNEIN AND ITS ROLE IN CELL MOTILITY;158
9.5.1;I. INTRODUCTION;158
9.5.2;II. DYNEIN-1: A WELL DEFINED DYNEIN;162
9.5.3;III. DYNEIN AND MOTILITY;167
9.5.4;ACKNOWLEDGMENTS;169
9.5.5;REFERENCES;169
9.6;CHAPTER 15. CYCLIC AMP AND INITIATION OF FLAGELLAR MOVEMENT IN RAINBOW TROUT SPERMATOZOA;172
9.6.1;MATERIALS AND METHODS;172
9.6.2;RESULTS;174
9.6.3;DISCUSSION;180
9.6.4;ACKNOWLEDGMENT;182
9.6.5;REFERENCES;182
9.7;CHAPTER 16. INVOLVEMENT OF CYCLIC AMP-DEPENDENT PROTEIN KINASE AND A PROTEIN FACTOR IN THE REGULATION OF THE MOTILITY OF SEA URCHIN AND STARFISH SPERMATOZOA;184
9.7.1;I. INTRODUCTION;184
9.7.2;II. MATERIALS AND METHODS;185
9.7.3;III. EFFECTS OF DEAE-ADSORBED FRACTION ON THE MOTILITY OF TRITON MODELS;185
9.7.4;IV. PARTICIPATION OF CYCLIC AMP–DEPENDENT PROTEIN KINASE IN THE REACTIVATION OF TRITON MODELS;189
9.7.5;V. ROLE OF A PROTEIN FACTOR IN THE REACTIVATION OF TRITON MODELS;192
9.7.6;VI. DISCUSSION;196
9.7.7;REFERENCES;196
9.8;CHAPTER 17. THE DYNAMICS OF MICROTUBULE SLIDING IN FLAGELLA;198
9.8.1;I. INTRODUCTION;198
9.8.2;II. THE FORCE OF MICROTUBULE SLIDING;199
9.8.3;III. THE FORCE-VELOCITY RELATION;203
9.8.4;IV. ISOMETRIC RECORDING;204
9.8.5;V. DISCUSSION;205
9.8.6;REFERENCES;207
9.9;CHAPTER 18. ROTATION OF THE CENTRAL-PAIR MICROTUBULES IN CHLAMYDOMONAS FLAGELLA;210
9.9.1;I. INTRODUCTION;210
9.9.2;II. MATERIALS AND METHODS;211
9.9.3;III. RESULTS;212
9.9.4;IV. DISCUSSION;217
9.9.5;REFERENCES;219
10;PART III: MICROTUBULES AND RELATED PROTEINS IN MITOSIS;220
10.1;CHAPTER 19. LOCALIZATION OF FLUORESCENTLY LABELED CALMODULIN IN LIVING SAND DOLLAR EGGS DURING EARLY DEVELOPMENT;220
10.1.1;I. INTRODUCTION;220
10.1.2;II. MATERIALS AND METHODS;221
10.1.3;III. RESULTS AND DISCUSSION;222
10.1.4;ACKNOWLEDGMENTS;230
10.1.5;REFERENCES;230
10.2;CHAPTER 20. ANALYSIS OF D2O EFFECT ON IN VIVO and IN VITRO TUBULIN POLYMERIZATION AND DEPOLYMERIZATION;232
10.2.1;I. INTRODUCTION;232
10.2.2;II. EFFECT OF HEAVY WATER ON THE MITOTIC SPINDLES;233
10.2.3;III. CAN D2O AFFECT ANAPHASE CHROMOSOME MOVEMENT?;236
10.2.4;IV. D2O EFFECT ON IN VITRO TUBULIN ASSEMBLY;241
10.2.5;ACKNOWLEDGEMENT;245
10.2.6;REFERENCES;245
10.3;CHAPTER 21. SPINDLE STRUCTURE AFTER CHROMOSOME MICROMANIPULATION;248
10.3.1;I. INTRODUCTION;248
10.3.2;II. RESULTS;249
10.3.3;III. CONCLUSIONS ON SPINDLE STRUCTURE;250
10.3.4;IV. INTERDEPENDENT CHROMOSOME MOVEMENT;251
10.3.5;REFERENCES;252
10.4;CHAPTER 22. MECHANICS OF ANAPHASE B MOVEMENT;254
10.4.1;I. INTRODUCTION;254
10.4.2;II. TESTS OF ANAPHASE B MODELS;255
10.4.3;III. ANAPHASE B MOVEMENT AND ASTER MIGRATION;259
10.4.4;IV. MECHANISMS FOR ANAPHASE B MOVEMENT;261
10.4.5;REFERENCES;264
10.5;CHAPTER 23. LOCATION OF THE MOTIVE FORCE FOR CHROMOSOME MOVEMENT IN SAND-DOLLAR EGGS;268
10.5.1;I. INTRODUCTION;268
10.5.2;II. MICROMANIPULATION OF THE MITOTIC APPARATUS.;269
10.5.3;III. CUTTING THE SPINDLE INTO TWO PARTS BY RAPIDLY COMPRESSING THE CELL;273
10.5.4;IV. DESTROYING A SELECTED PART OF THE SPINDLE BY COMBINED DEMECOLCINE TREATMENT AND REGIONAL IRRADIATION WITH ULTRAVIOLET RAYS;273
10.5.5;V. CONCLUSIONS;279
10.5.6;ACKNOWLEDGMENT;279
10.5.7;REFERENCES;280
11;PART IV: INTERACTIONS OF CYTOSKELETAL COMPONENTS;282
11.1;CHAPTER 24. ASSEMBLY AND DISASSEMBLY OF ECHINODERM EGG ACTIN;282
11.1.1;I. INTRODUCTION;282
11.1.2;II. ACTIN IN THE CORTICAL LAYER OF ECHINODERM EGGS;283
11.1.3;III. AN ACTIN DEPOLYMERIZING PROTEIN;285
11.1.4;IV. EFFECT OF pH ON ACTIN-DEPACTIN INTERACTION;286
11.1.5;V. POLYMERIZATION OF ACTIN FROM A CRUDE MONOMERIC ACTIN FRACTION;287
11.1.6;VI. EFFECT OF MYOSIN ON THE ACTIN-DEPACTIN INTERACTION;289
11.1.7;VII. DISCUSSION;290
11.1.8;REFERENCES;293
11.2;CHAPTER 25. CAPPING, BUNDLING, CROSSLINKING THREE PROPERTIES OF ACTIN BINDING PROTEINS;296
11.2.1;I. INTRODUCTION;296
11.2.2;II. RESULTS AND DISCUSSION;297
11.2.3;ACKNOWLEDGMENTS;303
11.2.4;REFERENCES;303
11.3;CHAPTER 26. PHOSPHORYLATION OF MICROTUBULE-ASSOCIATED PROTEINS (MAPs) CONTROLS BOTH MICROTUBULE ASSEMBLY AND MAPs-ACTIN INTERACTION;306
11.3.1;I. MATERIALS AND METHODS;307
11.3.2;II. INHIBITION OF MICROTUBULE ASSEMBLY BY PHOSPHORYLATION OF MAPS;308
11.3.3;III. INHIBITION OF MAPs-ACTIN INTERACTION BY PHOSPHORYLATION OF MAPs;308
11.3.4;IV. EFFECT OF pH CHANGE ON MAPs-ACTIN INTERACTION;309
11.3.5;V. INTERACTIONS OF ACTIN WITH MAP2 AND TAU PROTEINS;310
11.3.6;VI. EFFECT OF PHOSPHORYLATION OF MAP2 AND TAU ON THEIR ABILITY TO INTERACT WITH ACTIN;312
11.3.7;VII. EFFECT OF PHOSPHORYLATION OF MAP2 AND TAU ON THEIR ABILITY TO INDUCE TUBULIN POLYMERIZATION;314
11.3.8;VIII. CONCLUSIONS;315
11.3.9;REFERENCES;315
12;PART V: CYTOSKELETONS;318
12.1;CHAPTER 27. THE ASSOCIATION OF MAP-2 WITH MICROTUBULES, ACTIN FILAMENTS, AND COATED VESICLES;318
12.1.1;I. INTRODUCTION;318
12.1.2;II. ATTACHMENT OF COATED VESICLES TO MAP-MICROTUBULES;320
12.1.3;III. THE FORMATION OF MAP-ACTIN BUNDLES;323
12.1.4;III. IDENTIFICATION OF MAP-2 FRAGMENTS THAT BIND ACTIN OR TUBULIN;326
12.1.5;IV. CONCLUSION;329
12.1.6;REFERENCES;330
12.2;CHAPTER 28. ACTIN-MICROTUBULE INTERACTIONS;332
12.2.1;I. ORIGINAL EVIDENCE FOR ACTIN-MICROTUBULE INTERACTION;332
12.2.2;II. DIFFICULTIES WITH INTERPRETING THE ACTIN-MICROTUBULE EXPERIMENTS;334
12.2.3;III. ISOLATION OF MAPS SUBFRACTIONS CAPABLE OF CROSS-LINKING ACTIN FILAMENTS;336
12.2.4;IV. PHOSPHORYLATION OF MAPS REGULATES INTERACTION WITH ACTIN FILAMENTS;337
12.2.5;V. CONCLUSIONS;339
12.2.6;REFERENCES;340
12.3;CHAPTER 29. ON THE COEXISTENCE OF GLIAL FIBRILLARY ACIDIC (GFA) PROTEIN AND VIMENTIN IN ASTROGLIAL FILAMENTS;342
12.3.1;CYTOSKELETAL PROTEINS FROM THE SPINAL CORD AND OPTIC NERVE — INTERSPECIES VARIATION;343
12.3.2;PRESENCE OF VIMENTIN IN THE OPTIC NERVE CYTOSKELETON;345
12.3.3;IDENTIFICATION OF GFA PROTEIN IN CYTOSKELETONS ISOLATED FROM THE OPTIC NERVE AND SPINAL CORD;346
12.3.4;POSTNATAL CHANGES IN THE COMPOSITION OF CYTOSKELETAL PROTEINS;347
12.3.5;COMMENTS;347
12.3.6;ACKNOWLEDGEMENTS;349
12.3.7;REFERENCES;349
12.4;CHAPTER 30. THE MICROTUBULE-NEUROFILAMENT NETWORK: THE BALANCE BETWEEN PLASTICITY AND STABILITY IN THE NERVOUS SYSTEM;350
12.4.1;I. INTRODUCTION;350
12.4.2;II. METHODS;352
12.4.3;III. RESULTS;353
12.4.4;IV. DISCUSSION;357
12.4.5;REFERENCES;362
12.5;CHAPTER 31. THE CYTOSKELETON IN MYELINATED AXONS;364
12.5.1;I. SERIAL SECTION STUDY;364
12.5.2;II. FREEZE-ETCH REPLICA STUDY;368
12.5.3;III. SUMMARY AND CONCLUSION;372
12.5.4;ACKNOWLEDGMENTS;373
12.5.5;REFERENCES;373
12.6;CHAPTER 32. CELL CYCLE-DEPENDENT ALTERATION OF MICROTUBULE ORGANIZATION OF A MOUSE CELL LINE, L5178Y;376
12.6.1;I. INTRODUCTION;376
12.6.2;II. IMMUNOFLUORESCENCE ANALYSIS;377
12.6.3;II. ELECTRON MICROSCOPIC ANALYSIS;379
12.6.4;III. EVIDENCE FOR THE PRESENCE OF A QUANTITY OF UNPOLYMERIZED TUBULIN IN L5178Y CELLS;381
12.6.5;IV. DISCUSSION;383
12.6.6;REFERENCES;384
12.7;CHAPTER 33. DIRECT VISUALIZATION OF FLUORESCEIN-LABELED MICROTUBULES IN LIVING CELLS;386
12.7.1;INTRODUCTION;386
12.7.2;MATERIALS AND METHODS;387
12.7.3;RESULTS;388
12.7.4;DISCUSSION;392
12.7.5;REFERENCES;396
12.8;CHAPTER 34.
ASSOCIATION OF THE CYTOSKELETON WITH CELL MEMBRANES - A CONCEPT OF PLASMALEMMAL UNDERCOAT -;398
12.8.1;I. ASSOCIATION BETWEEN FIBROUS STRUCTURE AND CELL MEMBRANE;398
12.8.2;II. A CONCEPT OF PLASMALEMMAL UNDERCOAT;403
12.8.3;III. ERYTHROCYTE CYTOSKELETON AS A PLASMALEMMAL UNDERCOAT;405
12.8.4;IV. SUMMARY AND CONCLUSION;408
12.8.5;REFERENCES;409
13;PART VI: MICROTUBULES IN MEMBRANE FUNCTIONS AND TRANSPORT;412
13.1;CHAPTER 35.
MICROTUBULES COMPOSED OF TYROSINATED TUBULIN ARE REQUIRED FOR MEMBRANE EXCITABILITY IN SQUID GIANT AXON;412
13.1.1;I. MORPHOLOGICAL STUDY OF THE DISTRIBUTION OF AXOPLASMIC MICROTUBULES;412
13.1.2;II. SOME BIOCHEMICAL ASPECTS OF AXOPLASMIC PROTEINS OF THE SQUID GIANT AXON;415
13.1.3;III. SIMILARITY OF MEDIUM CONDITIONS FOR AXOPLASMIC MICROTUBULE ASSEMBLY IN VITRO, TO THOSE FOR MAXIMUM SODIUM AND POTASSIUM CONDUCTANCES;417
13.1.4;IV. RESTORATION OF DETERIORATED MEMBRANE EXCITABILITY;419
13.1.5;V. CONCLUSION;424
13.1.6;REFERENCES;425
13.2;CHAPTER 36. NEW ROLES FOR TUBULIN IN MEMBRANE FUNCTION;426
13.2.1;Effect of Microtubule Disassembly on Cell Volume;426
13.2.2;Effects of Microtubule Disassembly on Intracellular pH;431
13.2.3;The Interaction of Tubulin with Membranes;436
13.2.4;Implications;442
13.2.5;REFERENCES;444
13.3;CHAPTER 37. FAST AXOPLASMIC TRANSPORT OF A CALMODULIN-RELATED POLYPEPTIDE;446
13.3.1;INTRODUCTION;446
13.3.2;MATERIALS AND METHODS;447
13.3.3;RESULTS AND DISCUSSION;448
13.3.4;ACKNOWLEDGMENTS;452
13.3.5;REFERENCES;452
13.4;CHAPTER 38.
A PERMEABILIZED MODEL OF PIGMENT PARTICLE TRANSLOCATION: EVIDENCE FOR THE INVOLVEMENT OF A DYNEIN-LIKE MOLECULE IN PIGMENT AGGREGATION;454
13.4.1;I. INTRODUCTION;454
13.4.2;II. MATERIALS AND METHODS;455
13.4.3;III. RESULTS;456
13.4.4;III. DISCUSSION;463
13.4.5;ACKNOWLEDGMENTS;464
13.4.6;REFERENCES;464
14;Author Index;466
15;Subject Index;468




