E-Book, Englisch, 468 Seiten
Seetharamu / Rao / Khare Proceedings of Fatigue, Durability and Fracture Mechanics
1. Auflage 2018
ISBN: 978-981-10-6002-1
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 468 Seiten
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-981-10-6002-1
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the proceedings of Fatigue Durability India 2016, which was held on September 28-30 at J N Tata Auditorium, Indian Institute of Science, Bangalore. This 2nd International Conference & Exhibition brought international industrial experts and academics together on a single platform to facilitate the exchange of ideas and advances in the field of fatigue, durability and fracture mechanics and its applications. This book comprises articles on a broad spectrum of topics from design, engineering, testing and computational evaluation of components and systems for fatigue, durability, and fracture mechanics. The topics covered include interdisciplinary discussions on working aspects related to materials testing, evaluation of damage, nondestructive testing (NDT), failure analysis, finite element modeling (FEM) analysis, fatigue and fracture, processing, performance, and reliability. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.
Dr. K. Bhanu Sankara Rao FASM, FNAE, FIIM, FASc, formerly served as Head, Mechanical Metallurgy Division at the Indira Gandhi Centre for Atomic Research, Kalpakkam. Presently he is a Ministry of Steel Chair Professor in the Mahatma Gandhi Institute of Technology, Hyderabad. He has received his B.E degree (Metallurgy) from Visvesvaraya Regional College of Engineering, Nagpur, M.Tech (Physical Metallurgy) from the Indian Institute of Technology Bombay (IIT Bombay) and Ph.D (Metallurgical Engineering) from University of Madras. His current research interests are Mechanical Metallurgy, Physical Metallurgy, Welding Science and Technology and Powder Metallurgy. He has published 250 research papers. He has been serving as an Editor of International Materials Reviews, International Review Board Member of Metallurgical and Materials Transactions and Materials Engineering and Performance since 1995. He is a member of the Technical Books Committee of ASM International. He has been the recipient of the Best Metallurgist Award from the Ministry of Steel (1995), MRSI Medal (1997), NASA Appreciation (1994), Binani Gold Medal of IIM (1990), SAIL Gold Medal (Certificate of Merit) of IIM (2000), I.T. Mirchandani (1990), H.D. Govindaraj (1990), Nucor (1996), and D&H Schechron (1994) Awards of the Indian Institute of Welding. He has served as National Research Council Fellow of USA at the NASA Lewis Research Centre, Cleveland and as a Guest Scientist at Nuclear Research Centre, Juelich, Germany and University of Siegen, Germany.Dr. S. Seetharamu received his Ph.D. in Mechanical Engineering from the Indian Institute of Science (IISc) in 1982 after obtaining his M.E. in Mechanical Engineering from IISc in 1976 and B.E. in Mechanical Engineering from Bangalore University in 1974. Dr. S. Seetharamu worked in Central Power Research Institute (CPRI) since 1985 and retired as Director in June 2015. Energy Technology and Materials Engineering are his areas of interest and special thrust is towards management of coordination with the professional working teams for collaborations, accreditations as well as custom-specific training programmes. He has worked in the Industry and has also served as a Faculty at Toyohashi University of Technology, Japan. Dr. S. Seetharamu is a leading Scientist in the Central Power Research Institute which is contributing towards the development of Electrical Industry in India. He is the recipient of several awards, holder of many patents, and a member of multiple professional bodies.Dr. Raghunath Wasudev Khare has 35+ years of experience in Finite Element Method, Materials, Metallurgy, Fatigue and Failure Assessment. He holds his Master's and Doctorate from the Department of Mechanical Engineering, Indian Institute of Science, Bangalore. Dr. Raghunath Khare started his career with the Foundry and Forge Division of Hindustan Aeronautics Limited and later worked with various organisations as a Material & Failure Expert. He is the lead auditor for the failure investigations projects from Central Power Research Institute [CPRI] and Triveni Turbines, DHIO Research and Engineering Pvt Ltd., and so on. He has solved various industrial failure cases ranging from auto, aero and power plant companies. Dr. Raghunath Khare currently heads the Institute of Structural Integrity and Failure Studies [ISIFS], consortium of experts with decades of experience in solving the real-time industrial - fatigue, fracture, failure problems associated with design, engineering, material, process related with insight of theoretical, analytical, experimental and computational simulation knowledge.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;About the Editors;12
4;1 Finite Element Analysis-Based Approach for Stress Concentration Factor Calculation;14
4.1;Abstract;14
4.2;1 Introduction;14
4.3;2 Stress Concentration Factor;15
4.4;3 Methodology;16
4.4.1;3.1 Finite Element Analysis Based has been Used to Determine the Worst Principle Stress;16
4.4.2;3.2 VBA Code-Based Analytical Approach to Calculate the Stress Concentration Factor;16
4.4.2.1;3.2.1 Integration Method;16
4.4.2.2;3.2.2 Trapezoidal Method;17
4.4.2.2.1;Flowchart for stress concentration factor;17
4.5;4 Comparative Study;18
4.6;5 Conclusions;19
4.7;References;19
5;2 Evaluation of Viscoplastic Parameters of an Austenitic Stainless Steel at High Temperature;20
5.1;Abstract;20
5.2;1 Introduction;20
5.3;2 Viscoplastic Models in ANSYS;22
5.4;3 Tensile Testing of Austenitic Stainless Steel;23
5.5;4 Determination of Perzyna Parameters;25
5.6;5 Numerical Examples;26
5.6.1;5.1 Stress Analysis of a Tension Specimen Under Monotonic Loading;27
5.6.2;5.2 Cyclic Stress Analysis of a Simple Block;30
5.7;6 Calibration of Chaboche and Voce Model Parameters of SS-321;32
5.8;7 Cyclic Stress Analysis of Thrust Chamber;37
5.8.1;7.1 Life Cycle Prediction of Thrust Chamber;38
5.9;8 Conclusion;40
5.10;Acknowledgements;41
5.11;References;41
6;3 Potentiality of Small Punch Test Using Damage Model to Generate J-R Curve of 20MnMoNi55;42
6.1;Abstract;42
6.2;1 Introduction;43
6.3;2 Materials Used and Experimental Procedure;44
6.3.1;2.1 Materials;44
6.3.2;2.2 Small Punch Test Experimental Setup;44
6.3.3;2.3 Small Punch Test Experiment;44
6.3.4;2.4 Estimation and Comparison of Yield Strength and Ultimate Tensile Strength Using SPT Data;46
6.3.5;2.5 Calculation of Ramberg–Osgood Strain-Hardening Exponent and True Stress–Strain Data;47
6.4;3 FEA Modeling and Determination of Gurson Parameters;48
6.4.1;3.1 Finite Element Modeling;48
6.4.2;3.2 Numerical Calibration of Gurson Material Parameters;49
6.5;4 Estimation of J-R Curve Using SPT Data;50
6.5.1;4.1 Finite Element Modeling of CT Specimen;50
6.5.2;4.2 Numerical Estimation of J-R Curve;51
6.5.3;4.3 Numerical Modification of J-R Curves Estimation;52
6.6;5 Conclusions;52
6.7;References;52
7;4 Experimental Facility for Thermal Striping Studies in Dynamic Sodium Environment;54
7.1;Abstract;54
7.2;1 Introduction;55
7.3;2 Objective of the Experiments;56
7.4;3 Experimental Facility;56
7.5;4 Thermal Striping Test Vessel (TSTV) and Piping;56
7.6;5 Operation Philosophy and Process Requirements;58
7.7;6 Experimental Methodology;59
7.8;7 Experimental Scheme for TS Studies at INSOT Loop;59
7.8.1;7.1 Scheme for Fixing and Routing of the Thermocouples for the Instrumented Plate;59
7.8.2;7.2 Data Acquisition of Experimental Data;60
7.9;8 Commissioning of Thermal Striping Test Set-up (TSTS);61
7.9.1;8.1 Operation of TSTS at 300 °C and Conduct of in-Sodium Trial Test;62
7.9.2;8.2 Conducting TS Experiments up to 550 °C;63
7.10;9 Safety Ethos Followed;63
7.11;10 Future Direction;64
7.12;11 Conclusion;64
7.13;References;64
8;5 Linear Elastic Fracture Mechanics (LEFM)-Based Single Lap Joint (SLJ) Mixed-Mode Analysis for Aerospace Structures;66
8.1;Abstract;66
8.2;1 Introduction;67
8.2.1;1.1 Scope of the Work;68
8.3;2 Approach;69
8.3.1;2.1 Fracture Mechanics Approach;69
8.3.1.1;2.1.1 Cohesive Zone Modeling;69
8.3.1.2;2.1.2 Bilinear Traction Separation Law;70
8.3.1.3;2.1.3 Benzeggagh and Kenane (B–K) Law;71
8.4;3 Simulation and Validation;71
8.4.1;3.1 Parametric Study of Cohesive Elements from Simulation of ENF and MMB Tests;72
8.5;4 Results and Discussion;73
8.6;5 Numerical Modeling of SLJ;75
8.7;6 Conclusion;77
8.8;7 Future Scope of Work;78
8.9;References;78
9;6 Study of Fatigue Crack Growth Rate of AA6061 at Different Stress Ratios;80
9.1;Abstract;80
9.2;1 Introduction;80
9.3;2 Experimental Details;81
9.4;3 Results and Discussion;82
9.4.1;3.1 Fatigue Crack Growth Data;82
9.4.2;3.2 Mathematical Modeling of Crack Growth Based on Walker Approach;85
9.5;4 Conclusion;86
9.6;References;86
10;7 Cooler Casing Fatigue Analysis: An ASME Approach;88
10.1;Abstract;88
10.2;1 Introduction;88
10.3;2 Material Selection;90
10.4;3 Design Methods;91
10.5;4 Fatigue Screening Criteria;92
10.6;5 Finite Element Analysis;95
10.6.1;5.1 Steady-State Thermal;96
10.6.2;5.2 Maximum Pressure Standard Operation;96
10.6.3;5.3 Fatigue Assessment;100
10.6.3.1;5.3.1 Pressure Boundary Fatigue Assessment;100
10.6.3.2;5.3.2 Non-pressure Boundary Fatigue Assessment;103
10.7;6 Conclusion;103
10.8;References;104
11;8 Failure Analysis of HSS Punch Tool: A Case Study;105
11.1;Abstract;105
11.2;1 Introduction;106
11.3;2 Materials and Methods;106
11.3.1;2.1 Materials;106
11.3.2;2.2 Methods;106
11.3.2.1;2.2.1 Heat Treatment Process;107
11.3.2.2;2.2.2 Cold Forging;107
11.3.2.3;2.2.3 Visual Inspection;107
11.3.2.4;2.2.4 Chemical Composition;108
11.3.2.5;2.2.5 Hardness;108
11.3.2.6;2.2.6 Microstructure;108
11.3.2.7;2.2.7 Retained Austenite;108
11.3.2.8;2.2.8 Fractography Analysis;108
11.4;3 Results and Discussion;108
11.4.1;3.1 Visual Inspection;108
11.4.2;3.2 Chemical Analysis;109
11.4.3;3.3 Hardness Measurement;109
11.4.4;3.4 Microstructure Analysis;110
11.4.5;3.5 Retained Austenite;110
11.4.6;3.6 Fractographic Studies Using Scanning Electron Microscopy;110
11.5;4 Conclusions;113
11.6;Acknowledgements;113
11.7;References;113
12;9 Evaluation of Fatigue Strength of Alloy Steel Pipe Under Influence of Hydrostatic Pressure;114
12.1;Abstract;114
12.2;1 Introduction;115
12.2.1;1.1 Fatigue;115
12.2.2;1.2 Hydrostatic Pressure;116
12.3;2 Experimental Details;116
12.3.1;2.1 Methodology;116
12.3.2;2.2 Finite Element Analysis of Test Specimen Pipe;117
12.3.3;2.3 Specimen Preparation;117
12.3.4;2.4 Schematic Diagram of Test Setup;118
12.3.5;2.5 Experimental Procedure;119
12.4;3 Result and Discussion;120
12.4.1;3.1 Basquin Law;120
12.4.2;3.2 Tensile Test;121
12.4.3;3.3 Plain Fatigue Test;121
12.4.4;3.4 Hydrostatic Fatigue Test;123
12.4.5;3.5 Comparison Between Plain and Hydrostatic Fatigue;123
12.4.6;3.6 SEM Image of Plain Fatigue Test;125
12.4.7;3.7 SEM Image of Hydrostatic Fatigue Test;126
12.5;4 Conclusion;127
12.6;References;127
13;10 Estimation of Fatigue Life of Notched Specimens of P91 Steel by Analytical Approaches;128
13.1;Abstract;128
13.2;1 Introduction;129
13.3;2 Experimental Details;130
13.4;3 Results and Discussion;131
13.4.1;3.1 Fatigue Behavior of Smooth Specimens;131
13.4.2;3.2 Fatigue Behavior of Notched Specimens;133
13.5;4 Conclusions;138
13.6;Acknowledgements;138
13.7;References;138
14;11 Effect of Induced Residual Stress and Its Contribution to the Failure of an IC Engine Valve Material;140
14.1;Abstract;140
14.2;1 Introduction;141
14.3;2 Failure Observations;142
14.3.1;2.1 Engine Observation;142
14.3.2;2.2 Valve Observation;142
14.3.2.1;2.2.1 Chemical Composition Analysis;142
14.3.2.2;2.2.2 Hardness Analysis;143
14.3.2.3;2.2.3 Inclusions Analysis;144
14.3.3;2.3 Process Observation;147
14.4;3 Stress Calculations;148
14.4.1;3.1 Stress Study;148
14.4.2;3.2 Residual Stress Measurement;148
14.5;4 Reduction of Inferring Stress;149
14.5.1;4.1 Stress Relieve Process;149
14.6;5 Conclusions;151
14.7;References;151
15;12 Fatigue Analysis of Offshore Structures in Indian Western Offshore;153
15.1;Abstract;153
15.2;1 Introduction;154
15.3;2 Fatigue in Offshore Tubular Structures;154
15.3.1;2.1 Fatigue Assessment;154
15.3.2;2.2 Analysis Methodology;158
15.4;3 Case Study;160
15.4.1;3.1 Results;160
15.5;4 Conclusion;161
15.6;Acknowledgements;161
15.7;References;161
16;13 Crack Effect on Rotors Using Mode-I Failure Model with Transfer Matrix Approach;162
16.1;Abstract;162
16.2;1 Introduction;162
16.3;2 Mathematical Modeling;164
16.3.1;2.1 Additional Flexibility Due to Crack;164
16.3.2;2.2 Transfer Matrix Method;165
16.3.3;2.3 Breathing Crack;167
16.4;3 Results and Discussion;168
16.4.1;3.1 Effect of Crack Depth;169
16.4.2;3.2 Effect of Crack Location;170
16.4.3;3.3 Modeling of Crack in 2-D;171
16.4.4;3.4 Fatigue Analysis of System on Difference Condition;172
16.5;4 Conclusions;172
16.6;Appendix: The Flexibility Coefficient Derivation;173
16.7;References;173
17;14 Multiaxial Fatigue Analysis—Approach Toward Real-World Life Prediction;175
17.1;Abstract;175
17.2;1 Introduction;176
17.2.1;1.1 Multiaxial Fatigue Analysis;176
17.2.2;1.2 Necessity;176
17.2.3;1.3 Terms Associated with Multiaxiality;178
17.2.4;1.4 Fatigue Damage Modeling;178
17.2.5;1.5 Mean Stress Correction;183
17.2.6;1.6 Multiaxial Plasticity;184
17.3;2 n-Code Multiaxial Fatigue Analysis Approach;187
17.4;3 Multiaxial Fatigue Analysis and Discussion;190
17.5;4 Conclusion;191
17.6;References;191
18;15 Effect of Loading Rate and Constraint on Dynamic Ductile Fracture Toughness of P91 Steel;192
18.1;Abstract;192
18.2;1 Introduction;193
18.3;2 Material;194
18.4;3 Pre-cracking of Charpy V-Notch Specimens;195
18.5;4 Experimental;195
18.6;5 Smoothening of P-d Plots;196
18.7;6 Current Crack Length Estimation Methodologies;197
18.7.1;6.1 Normalization Method;197
18.7.2;6.2 Compliance Ratio ‘CR’ Key Curve Method;198
18.8;7 Results and Discussion;200
18.9;8 Conclusions;207
18.10;References;207
19;16 Fatigue Life Prediction of Commercial Dental Implant Using Analytical Approach and Verification by FEA;209
19.1;Abstract;209
19.2;1 Introduction;210
19.3;2 Implant System;210
19.3.1;2.1 Implant Selection;210
19.3.2;2.2 Implant–Bone Interface;210
19.3.3;2.3 Interface Conditions;211
19.4;3 Materials and Methods;211
19.4.1;3.1 Geometrical Modeling;211
19.4.2;3.2 FE Modeling;212
19.4.3;3.3 Material Properties;212
19.4.4;3.4 Load and Boundary Conditions;213
19.4.5;3.5 Assumptions;213
19.5;4 Experimental Procedure;213
19.5.1;4.1 Photoelastic Test Setup;213
19.5.2;4.2 Photoelastic Material Model;214
19.5.3;4.3 Implant Fitment;214
19.6;5 Results and Discussion;214
19.7;6 Fatigue Life Predictions;215
19.8;7 Conclusion;216
19.9;References;217
20;17 Layered Microstructure Generated by Multipass Friction Stir Processing in AZ91 Alloy and Its Effect on Fatigue Characteristics;219
20.1;Abstract;219
20.2;1 Introduction;219
20.3;2 Experimental Method;220
20.4;3 Results and Discussion;221
20.4.1;3.1 Microstructure;221
20.4.2;3.2 Texture;222
20.4.3;3.3 Fatigue;223
20.5;4 Conclusions;227
20.6;References;227
21;18 Grain Refinement Mechanism and Its Effect on Strength and Fracture Toughness Properties of Al–Zn–Mg Alloy;229
21.1;Abstract;229
21.2;1 Introduction;230
21.3;2 Experimental Procedure;231
21.3.1;2.1 Aluminium Alloy Preparation;231
21.3.2;2.2 Friction Stir Processing (FSP);231
21.3.3;2.3 Optical Microscopy (OM);232
21.3.4;2.4 Electron Probe Microanalysis (EPMA);232
21.3.5;2.5 Transmission Electron Microscopy (TEM);233
21.3.6;2.6 Tensile Testing;233
21.3.7;2.7 Fracture Toughness (KIC) Testing;233
21.3.8;2.8 Scanning Electron Microscopy (SEM);235
21.4;3 Results and Discussion;235
21.5;4 Conclusions;239
21.6;Acknowledgements;240
21.7;Appendix;240
21.8;References;241
22;19 Evolution of Tertiary Carbides and Its Influence on Wear Behavior, Surface Roughness and Fatigue Limit of Die Steels;243
22.1;Abstract;243
22.2;1 Introduction;243
22.3;2 Experimental Methods;244
22.3.1;2.1 Material Heat Treatment;244
22.3.2;2.2 Characterization;245
22.3.3;2.3 Wear Testing;246
22.4;3 Results and Discussion;246
22.4.1;3.1 Mechanism of Carbide Evolution;246
22.4.2;3.2 Carbide Density and Hardness;248
22.4.3;3.3 Microstructural Impact on Surface Roughness;248
22.4.4;3.4 Wear Behavior;249
22.5;4 Fatigue Specimen;252
22.5.1;4.1 Fatigue Test;253
22.5.2;4.2 Effect of Roughness on Crack Nucleation;253
22.5.3;4.3 Fatigue Mechanism;254
22.6;5 Conclusion;257
22.7;Acknowledgements;257
22.8;References;257
23;20 Lakshya: Life Assessment, Extension and Certification;259
23.1;Abstract;259
23.2;1 Introduction;259
23.3;2 Structural Design and Operational Life Assessment;260
23.3.1;2.1 Structural Design;260
23.3.2;2.2 Effects of Operations and Environment on Life of Lakshya;261
23.3.3;2.3 Effect on Life of Lakshya;262
23.4;3 Service Life Extension Criteria;262
23.5;4 Economy of Life Extension;262
23.6;5 Service Life Extension Procedure;263
23.6.1;5.1 Stiffness and Integrity/Health Monitoring of Airframe [4];264
23.6.2;5.2 NDT of Critical Components;266
23.6.3;5.3 Corrective/Preventive Actions and Operational Readiness;268
23.7;6 Corrosion Due to Sea Water Ingress and Storage;268
23.7.1;6.1 Detection, Prevention and Repair;268
23.7.2;6.2 Some Design Lessons Learnt from Sea Dunking of Lakshya are as Follows [3];269
23.8;7 Certification;271
23.9;8 Conclusion;271
23.10;Acknowledgements;272
23.11;References;272
24;21 Creep–Fatigue Damage Evaluation of 2.25Cr-1Mo Steel in Process Reactor Using ASME-NH Code Methodology;273
24.1;Abstract;273
24.2;1 Introduction;274
24.3;2 Creep–Fatigue Evaluation of a Process Reactor Outlet Nozzle;276
24.3.1;2.1 Main Design Features;276
24.3.2;2.2 Finite Element Analysis;278
24.3.3;2.3 ASME-NH Elastic Analysis of 2.25Cr-1Mo Process Reactor Outlet Nozzle;279
24.4;3 Results and Discussion;280
24.4.1;3.1 Fatigue Damage;280
24.4.2;3.2 Creep Damage and Combined Creep–Fatigue Damage;281
24.4.3;3.3 Effect of Hold Time, Hold Temperature and Rate of Temperature Change on Creep–Fatigue Damage;282
24.5;4 Conclusions;285
24.6;Appendix: Flowchart for Creep and Fatigue Damage Evaluation;286
24.7;References;286
25;22 Analysis and Design Optimization for Improved Fatigue Life of One-Way Clutch Drive Used in Starter Motor;288
25.1;Abstract;288
25.2;1 Introduction;289
25.3;2 Design Methodologies;290
25.4;3 One-Way Clutch Analysis Procedure;294
25.5;4 Initial Design Analysis and Results;297
25.6;5 Fatigue Calculations;298
25.7;6 Optimization Results;299
25.8;7 Conclusion;302
25.9;Acknowledgements;303
25.10;References;303
26;23 Creep–Fatigue Assessment for Interaction Between IHX Seal Holder and Inner Vessel Stand Pipe in a Pool-Type Fast Reactor as Per RCC-MR;304
26.1;Abstract;304
26.2;1 Introduction;304
26.3;2 Structural Analysis;305
26.4;3 Evaluation of Damage;309
26.5;4 Conclusion;310
26.6;References;311
27;24 Probabilistic Fatigue Life Estimation of Plate with Multiple Stress Concentration Zones;312
27.1;Abstract;312
27.2;1 Introduction;313
27.3;2 Deterministic Fatigue Life Estimation;314
27.3.1;2.1 Stress-Life Approach;314
27.3.2;2.2 Plate with Single Stress Concentration Zone;316
27.3.3;2.3 Plate with Multiple Stress Concentration Zones;318
27.4;3 Probabilistic Fatigue Life Estimation Using Latin Hypercube Sampling;320
27.4.1;3.1 Probabilistic Approach;320
27.4.2;3.2 Nastran Integration with MATLAB;321
27.4.3;3.3 Parametric Studies;323
27.5;4 Conclusions;326
27.6;Acknowledgements;326
27.7;References;326
28;25 Creep–Fatigue Interaction Study on Gas Turbine Engine Alloy;328
28.1;Abstract;328
28.2;1 Introduction;329
28.3;2 Material and Experimental Procedure;330
28.4;3 Results and Discussion;332
28.4.1;3.1 Tensile Testing;332
28.4.2;3.2 LCF and CF Tests;333
28.4.3;3.3 SEM Analysis;335
28.5;4 Conclusions;337
28.6;Acknowledgements;337
28.7;References;338
29;26 Evaluation of Implicit Reliability Level Associated with Fatigue Design Criteria of Nuclear Class-1 Piping;339
29.1;Abstract;339
29.2;1 Introduction;340
29.3;2 ASME Fatigue Design Criteria;341
29.4;3 Fatigue Curve of ASME and ANL;343
29.5;4 Parameters Affecting Fatigue Life of Components;345
29.5.1;4.1 Parameters Affecting Fatigue Life in Air Environment;345
29.5.2;4.2 Parameters Affecting Fatigue Life in Water Environment;345
29.5.3;4.3 Parameters Affecting Fatigue Damage Assessment;346
29.6;5 Formulation for Implicit Reliability Level in Fatigue Design;347
29.6.1;5.1 Fatigue Design Limit State Function;348
29.6.2;5.2 Stochastic Characteristics of Variables;349
29.6.3;5.3 Computational Procedure;350
29.7;6 Computation of Implicit Reliability Levels;351
29.7.1;6.1 Sensitivity Analysis;351
29.7.2;6.2 Failure Probability Evaluation;351
29.8;7 Conclusion;353
29.9;References;354
30;27 The Tensile Fatigue Behaviour of Aligned MWNT/Epoxy Nanocomposites;355
30.1;Abstract;355
30.2;1 Introduction;356
30.3;2 Experimental;357
30.3.1;2.1 Materials;357
30.3.2;2.2 Specimen Preparation;357
30.3.3;2.3 Testing Procedure;359
30.4;3 Results and Discussion;360
30.5;4 Conclusions;362
30.6;Acknowledgements;362
30.7;References;362
31;28 Thermo-Mechanical Creep and Recovery of CTBN–Epoxy Shape Memory Polymers Under Saline Environment;364
31.1;Abstract;364
31.2;1 Introduction;364
31.3;2 Experimental;365
31.3.1;2.1 Material and Specimen Preparation;365
31.3.2;2.2 Creep Tests;366
31.3.3;2.3 Salt Spray Test;366
31.4;3 Results and Discussions;367
31.4.1;3.1 Influence of Temperatures and Loads;367
31.4.2;3.2 Influence of CTBN and Saline Environment;367
31.5;4 Conclusions;370
31.6;References;370
32;29 Fatigue Life Estimation of Components Mounted on PCB Due to Vibration;372
32.1;Abstract;372
32.2;1 Introduction;373
32.3;2 Literature Review;373
32.4;3 Vibration Analysis of a PCB Mounted with Transistors;375
32.4.1;3.1 Modal Analysis of PCB with Four Transistors;375
32.4.2;3.2 Stress Analysis of PCB with Four Transistors;375
32.4.3;3.3 Fatigue Life Calculation for the Component Pin;377
32.5;4 Vibration Analysis of Transistor Alone;378
32.5.1;4.1 Frequency Response Analysis of Transistor;378
32.5.2;4.2 Fatigue Life Calculation for the Component Pin Due to Sine Vibration;379
32.5.3;4.3 Fatigue Life Calculation for the Component Pin Due to Random Vibration;380
32.6;5 Conclusions;381
32.7;Acknowledgements;382
32.8;References;382
33;30 Modified Rainflow Counting Algorithm for Fatigue Life Calculation;383
33.1;Abstract;383
33.2;1 Introduction;383
33.3;2 Concept of Rainflow Counting Method;384
33.4;3 Computer Programming of MGRM;386
33.5;4 Illustrative Example;387
33.6;5 Conclusion;389
33.7;References;389
34;31 Damage Prognosis of Plain Concrete Under Low-Cycle Fatigue Using Piezo-Based Concrete Vibration Sensors;390
34.1;Abstract;390
34.2;1 Introduction;391
34.3;2 High-Stress Low-Cycle Compressive Fatigue;393
34.3.1;2.1 Experimental Program;393
34.3.2;2.2 Data Analysis and Results;393
34.4;3 Conclusions;396
34.5;References;397
35;32 Asymmetric Cyclic Behaviour of Fine- and Coarse-Grained Commercially Pure Copper and Aluminium;398
35.1;Abstract;398
35.2;1 Introduction;398
35.3;2 Experimental Procedure;400
35.4;3 Results and Discussion;403
35.4.1;3.1 Microstructure and Tensile Properties;403
35.4.2;3.2 Ratcheting Deformation Behaviour;404
35.4.3;3.3 Ratcheting Strain Rate Evolution;407
35.4.4;3.4 Fractography;409
35.5;4 Conclusions;411
35.6;Acknowledgements;411
35.7;References;411
36;33 High-Temperature Fatigue Crack Growth Behaviour of SS 316LN;413
36.1;Abstract;413
36.2;1 Introduction;413
36.3;2 Experimental;415
36.4;3 Results and Discussion;415
36.4.1;3.1 FCG Results;415
36.4.2;3.2 Effect of Crack Closure and Dynamic Strain Ageing (DSA) on FCG;417
36.4.3;3.3 Effect of Modulus (E) and Yield Strength ( \sigma_{y} ) on FCG;418
36.5;4 Conclusions;421
36.6;Acknowledgements;421
36.7;References;421
37;34 Numerical Simulation of Fracture in Coatings Subjected to Sudden Temperature Change Using Element-Free Galerkin Method;423
37.1;Abstract;423
37.2;1 Introduction;423
37.3;2 Derivation of EFGM Shape Functions;424
37.4;3 Jump Function Approach for Interface Modeling;425
37.5;4 Computation of SIFs by Employing Interaction Integral Scheme;426
37.6;5 Numerical Execution;427
37.6.1;5.1 Edge Crack Under Thermal Load;429
37.7;6 Conclusion;430
37.8;References;430
38;35 Measurement of Residual Stress Distribution and Fatigue Life Assessment of Similar and Dissimilar Butt-Welded Joint;432
38.1;Abstract;432
38.2;1 Introduction;432
38.3;2 Experimental Details;434
38.4;3 Results and Discussions;437
38.4.1;3.1 Effect of Shot Peening on Residual Stress;437
38.4.2;3.2 Effect of Shot Peening on Fatigue Life;438
38.4.3;3.3 Effect of Shot Peening on Hardness;439
38.5;4 Conclusions;442
38.6;References;442
39;36 Fatigue Life Prediction of Spot Welded Joints: A Review;443
39.1;Abstract;443
39.2;1 Introduction;443
39.3;2 Models for Fatigue Life Assessment;445
39.4;3 Design and Process Parameters;447
39.4.1;3.1 Specimen Thickness and Nugget Diameter;447
39.4.2;3.2 Effect of Material Strength;449
39.4.3;3.3 Effects of the Loads;449
39.4.4;3.4 Distance Between Two Spot;450
39.4.5;3.5 Effect of Corrosive Field;451
39.4.6;3.6 Numerical Modeling;451
39.5;4 Conclusion;452
39.6;References;453
40;37 Crystal Orientation Effect on SIF in Single Crystals: A Study Based on Coupled Framework of XFEM and Crystal Plasticity Model;454
40.1;Abstract;454
40.2;1 Introduction;454
40.3;2 Crystal Plasticity Based Material Modeling;455
40.3.1;2.1 Kinematics;456
40.3.2;2.2 Constitutive Laws;457
40.3.3;2.3 Hardening Law;458
40.4;3 Extended Finite Element Method (XFEM);459
40.5;4 Numerical Modeling;460
40.6;5 Results and Discussion;462
40.6.1;5.1 Effect of Lattice Orientation on Deformation Behavior of Single Crystal;462
40.6.2;5.2 Effect of Crystal Orientation on Mode I Stress Intensity Factor \left( {K_{I} } \right);464
40.7;6 Conclusions;467
40.8;References;467




