Buch, Englisch, Band 1749, 276 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 431 g
Reihe: Lecture Notes in Mathematics
Buch, Englisch, Band 1749, 276 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 431 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-41397-4
Verlag: Springer Berlin Heidelberg
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Physik Mechanik
Weitere Infos & Material
Weak solutions to boundary value problems in the deformation theory of perfect elastoplasticity.- Differentiability properties of weak solutions to boundary value problems in the deformation theory of plasticity.- Quasi-static fluids of generalized Newtonian type.- Fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening law.