Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Buch, Englisch, 375 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 675 g
An Introduction
Buch, Englisch, 375 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 675 g
Reihe: Mechanical Engineering Series
ISBN: 978-3-030-06824-0
Verlag: Springer International Publishing
This fully revised and updated third edition covers the physical and mathematical fundamentals of vibration analysis, including single degree of freedom, multi-degree of freedom, and continuous systems. A new chapter on special topics that include motion control, impact dynamics, and nonlinear dynamics is added to the new edition. In a simple and systematic manner, the book presents techniques that can easily be applied to the analysis of vibration of mechanical and structural systems. Suitable for a one-semester course on vibrations, the book presents the new concepts in simple terms and explains procedures for solving problems in considerable detail. It contains numerous exercises, examples and end-of-chapter problems.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Introduction.- 1.1 Basic Definitions.- 1.2 Elements of the Vibration Models.- 1.3 Particle Dynamics.- 1.4 Systems of Particles.- 1.5 Dynamics of Rigid Bodies.- 1.6 Linearization of the Differential Equations.- 1.7 Idealization of Mechanical and Structural Systems.- Problems.- 2 Solution of the Vibration Equations.- 2.1 Homogeneous Differential Equations.- 2.2 Initial Conditions.- 2.3 Solution of Nonhomogeneous Equations with Constant Coefficients.- 2.4 Stability of Motion.- Problems.- 3 Free Vibration of Single Degree of Freedom Systems.- 3.1 Free Undamped Vibration.- 3.2 Analysis of the Oscillatory Motion.- 3.3 Stability of Undamped Linear Systems.- 3.4 Continuous Systems.- 3.5 Equivalent Systems.- 3.6 Free Damped Vibration.- 3.7 Logarithmic Decrement.- 3.8 Structural Damping.- 3.9 Coulomb Damping.- 3.10 Self-Excited Vibration.- 3.11 Motion Control.- 3.12 Impact Dynamics.- Problems.- 4 Forced Vibration.- 4.1 Differential Equation of Motion.- 4.2 Forced Undamped Vibration.- 4.3 Resonance and Beating.- 4.4 Forced Vibration of Damped Systems.- 4.5 Rotating Unbalance.- 4.6 Base Motion.- 4.7 Measuring Instruments.- 4.8 Experimental Methods for Damping Evaluation.- Problems.- 5 Response to Nonharmonic Forces.- 5.1 Periodic Forcing Functions.- 5.2 Determination of the Fourier Coefficients.- 5.3 Special Cases.- 5.4 Vibration Under Periodic Forcing Functions.- 5.5 Impulsive Motion.- 5.6 Response to an Arbitrary Forcing Function.- 5.7 Frequency Contents in Arbitrary Forcing Functions.- 5.8 Computer Methods in Nonlinear Vibration.- Problems.- 6 Systems with More Than One Degree of Freedom.- 6.1 Free Undamped Vibration.- 6.2 Matrix Equations.- 6.3 Damped Free Vibration.- 6.4 Undamped Forced Vibration.- 6.5 Vibration Absorber of the Undamped System.- 6.6 Forced Vibration of Damped Systems.- 6.7 The Untuned Viscous Vibration Absorber.- 6.8 Multi-Degree of Freedom Systems.- Problems.- 7 Continuous Systems.- 7.1 Free Longitudinal Vibrations.- 7.2 Free Torsional Vibrations.- 7.3Free Transverse Vibrations.- 7.4 Orthogonality of the Eigenfunctions.- 7.5 Forced Longitudinal and Torsional Vibrations.- 7.6 Forced Transverse Vibrations.- Problems.- References.- Answers to Selected Problems.