Shafarevich | Discourses on Algebra | Buch | 978-3-540-42253-2 | sack.de

Buch, Englisch, 279 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

Reihe: Universitext

Shafarevich

Discourses on Algebra


2003
ISBN: 978-3-540-42253-2
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 279 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

Reihe: Universitext

ISBN: 978-3-540-42253-2
Verlag: Springer Berlin Heidelberg


I wish that algebra would be the Cinderella ofour story. In the math­ ematics program in schools, geometry has often been the favorite daugh­ ter. The amount of geometric knowledge studied in schools is approx­ imately equal to the level achieved in ancient Greece and summarized by Euclid in his Elements (third century B. C. ). For a long time, geom­ etry was taught according to Euclid; simplified variants have recently appeared. In spite of all the changes introduced in geometry cours­ es, geometry retains the influence of Euclid and the inclination of the grandiose scientific revolution that occurred in Greece. More than once I have met a person who said, "I didn't choose math as my profession, but I'll never forget the beauty of the elegant edifice built in geometry with its strict deduction of more and more complicated propositions, all beginning from the very simplest, most obvious statements!" Unfortunately, I have never heard a similar assessment concerning al­ gebra. Algebra courses in schools comprise a strange mixture of useful rules, logical judgments, and exercises in using aids such as tables of log­ arithms and pocket calculators. Such a course is closer in spirit to the brand of mathematics developed in ancient Egypt and Babylon than to the line of development that appeared in ancient Greece and then con­ tinued from the Renaissance in western Europe. Nevertheless, algebra is just as fundamental, just as deep, and just as beautiful as geometry.

Shafarevich Discourses on Algebra jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1. Integers (Topic: Numbers).- 1. ?2 Is Not Rational.- 2. The Irrationality of Other Square Roots.- 3. Decomposition into Prime Factors.- 2. Simplest Properties of Polynomials (Topic: Polynomials).- 4. Roots and the Divisibility of Polynomials.- 5. Multiple Roots and the Derivative.- 6. Binomial Formula.- 3. Finite Sets (Topic: Sets).- 7. Sets and Subsets.- 8. Combinatorics.- 9. Set Algebra.- 10. The Language of Probability.- 4. Prime Numbers (Topic: Numbers).- 11. The Number of Prime Numbers is Infinite.- 12. Euler’s Proof That the Number of Prime Numbers is Infinite.- 13. Distribution of Prime Numbers.- 5. Real Numbers and Polynomials (Topic: Numbers and Polynomials).- 14. Axioms of the Real Numbers.- 15. Limits and Infinite Sums.- 16. Representation of Real Numbers as Decimal Fractions.- 17. Real Roots of Polynomials.- 6. Infinite Sets (Topic: Sets).- 18. Equipotence.- 19. Continuum.- 20. Thin Sets.- Supplement: Normal Numbers.- 7. Power Series (Topic: Polynomials).- 21. Polynomialsas Generating Functions.- 22. Power Series.- 23. Partitio Numerorum.- Dates of Lives of Mathematicians Mentioned in the Text.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.