Shea | Linear Algebra for Data Science with Python | Buch | 978-1-032-65916-9 | sack.de

Buch, Englisch, 264 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC The Python Series

Shea

Linear Algebra for Data Science with Python


1. Auflage 2025
ISBN: 978-1-032-65916-9
Verlag: Taylor & Francis Ltd

Buch, Englisch, 264 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC The Python Series

ISBN: 978-1-032-65916-9
Verlag: Taylor & Francis Ltd


Linear Algebra for Data Science with Python provides an introduction to vectors and matrices within the context of data science. This book starts from the fundamentals of vectors and how vectors are used to model data, builds up to matrices and their operations, and then considers applications of matrices and vectors to data fitting, transforming time-series data into the frequency domain, and dimensionality reduction. This book uses a computational-first approach: the reader will learn how to use Python and the associated data-science libraries to work with and visualize vectors and matrices and their operations, as well as to import data to apply these techniques. Readers learn the basics of performing vector and matrix operations by hand but are also shown how to use several different Python libraries for performing these operations.

Key Features:

- Teaches the most important concepts and techniques for working with multi-dimensional data using vectors and matrices.

- Introduces readers to the some of the most important Python libraries for working with data, including NumPy and and PyTorch.

- Examples using real data and engineering applications show the utility of the techniques covered in this book.

- Includes many color visualizations to illustrate mathematical operations involving vectors and matrices.

- Offers an accompanying website that provides a unique set of online, interactive tools to help the reader learn the material.

Shea Linear Algebra for Data Science with Python jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction. 2. Vectors and Vector Operation. 3. Matrices and Operations. 4. Solving Systems of Linear Equations. 5. Exact and Approximate Data Fitting. 6. Transforming Data.


John M. Shea, PhD is a Professor in the Department of Electrical and Computer Engineering at the University of Florida, where he has taught classes on stochastic methods, data science, and wireless communications for over 25 years. He earned his PhD in Electrical Engineering from Clemson University in 1998 and later received the Outstanding Young Alumni award from the Clemson College of Engineering and Science. Dr. Shea was co-leader of Team GatorWings, which won the Defense Advanced Research Project Agency’s (DARPA’s) Spectrum Collaboration Challenge (DARPA's fifth Grand Challenge) in 2019; he received the Lifetime Achievement Award for Technical Achievement from the IEEE Military Communications Conference (MILCOM) and is a two-time winner of the Ellersick Award from the IEEE Communications Society for the Best Paper in the Unclassified Program of MILCOM.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.