E-Book, Englisch, Band Volume 31, 476 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
Shen / Satake / Mehrabadi Advances in Micromechanics of Granular Materials
1. Auflage 2013
ISBN: 978-1-4832-9128-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Second US/Japan Seminar on Micromechanics of Granular Materials, Potsdam, NY, USA, August 5-9, 1991
E-Book, Englisch, Band Volume 31, 476 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
ISBN: 978-1-4832-9128-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The 45 papers presented in this volume all share the common goal of constructing continuum models based on the micro behaviours of granular materials. Computer simulations continue to provide observations to aid modelling, while new experimental works begin to show promise for increased understanding in this area. Theoretical studies have extended into transitions between the rapid and quasi-static regimes and the fluid and solid mixture flows. Exciting new topics discussed in this volume include: concepts of a measure for randomness in quasi-static granular materials, which is analogous to the granular temperature in a rapid flow; scaling effects in granular media and their implications in both physical and computer simulations; instability; and boundary effects on heterogeneous behavior in simple flow configurations, which are posing new challenges for mathematical modelling. The volume will prove indispensable reading for researchers interested in the current developments in the fundamental aspects of mechanics of granular materials.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Micromechanics of Granular Materials;4
3;Copyright Page;5
4;Table of Contents;8
5;PREFACE;6
6;List of Participants;12
7;List of Observers;14
8;Chapter 1. New formulation of graph-theoretical approach in the mechanicsof granular materials;16
8.1;Abstract;16
8.2;1. INTRODUCTION;16
8.3;2. DISCRETE MECHANICAL QUANTITIES IN GRANULARASSEMBLIES;16
8.4;3. MECHANICAL QUANTITIES IN VOIDS;19
8.5;4. DISCRETE SCHAEFER OPERATOR;22
8.6;5. ENERGY EXPRESSION;23
8.7;6. CONCLUDING REMARKS;25
8.8;7. REFERENCES;25
9;Chapter 2.Derivation of constitutive law for granular materials based on dissipation functions;26
9.1;1. INTRODUCTION;26
9.2;2. PRINCIPLE OF MAXIMUM DISSIPATION;27
9.3;3. SCHEME TO GET CONSTITUTIVE LAW;29
9.4;4. TYPICAL FORMS OF FUNCTIONS;30
9.5;5. APPLICATION TO TRI-AXIAL STRESS STATES;32
9.6;6. CONCLUDING REMARKS;34
9.7;REFERENCES;34
10;Chapter 3. Micromechanics of flow and failure modes of particulate media over a wide range of strain rates;36
10.1;1. INTRODUCTION;36
10.2;2. CONSTITUTIVE EQUATIONS;39
10.3;3. HARDENING AND SOFTENING;41
10.4;4. EXAMPLES;42
10.5;5. CONCLUSION;42
10.6;6. ACKNOWLEDGEMENTS;43
10.7;7. REFERENCES;43
11;Chapter 4. Contact force distribution in granular media;46
11.1;1. INTRODUCTION;46
11.2;2. DESCRIPTION OF THE CONTACT FORCE DISTRIBUTION;46
11.3;4. INDUCED ANISOTROPY;49
11.4;5. ANALYSIS OF THE SIMULATION OF A BIAXIAL TEST;50
11.5;6. DISTRIBUTION SHAPE;55
11.6;7. CONCLUSION;55
11.7;8. REFERENCES;55
12;Chapter 5. Mean-Field Stress-Strain Relations for Random Arrays of Identical Spheres in Triaxial Compression;56
12.1;1. INTRODUCTION;56
12.2;2. THEORY;57
12.3;3. ACKNOWLEDGEMENT;64
12.4;4. REFERENCES;65
13;Chapter 6. Anisotropie Elastic Constants of Granular Assembly From Wave Velocity Measurements Tarun K. Agarwal and Isao Ishibashi;66
13.1;1. INTRODUCTION;66
13.2;2. ELASTIC THEORY OF WAVE PROPAGATION;66
13.3;3. RECOVERY OF ELASTIC CONSTANTS FROM WAVE VELOCITY;67
13.4;4. WAVE MEASUREMENT EXPERIMENTS;69
13.5;5. RESULTS AND DISCUSSIONS;69
13.6;6. CONCLUSIONS;71
13.7;7. ACKNOWLEDGEMENT;71
13.8;8. REFERENCES;71
14;Chapter 7. A Note on the Microstructural Dependence of the Anisotropie Elastic Constants of Textured Materials;76
14.1;1. INTRODUCTION;76
14.2;2. FABRIC;77
14.3;3. STRAIN-STRESS-FABRIC RELATIONS;80
14.4;4. THE DEPENDENCE OF THE ORTHOTROPIC ELASTIC CONSTANTS UPON FABRIC;81
14.5;5. THE ANISOTROPY OF FOAMS;82
14.6;6. DISCUSSION;84
14.7;ACKNOWLEDGEMENT
;85
14.8;REFERENCES;85
15;Chapter 8. Random Fields and Processes in Mechanics of Granular Materials;86
15.1;1. INTRODUCTION;86
15.2;2. MECHANICS OF DELAUNAY NETWORKS AS A PARADIGM FOR DETER-MINATION OF A CONTINUUM MODEL;87
15.3;3. ADVANCES IN WAVEFRONT PROPAGATION IN RANDOM MEDIA;91
15.4;4. CONCLUSIONS;93
15.5;5. ACKNOWLEDGEMENT;94
15.6;6. REFERENCES;94
16;Chapter 9. A constitutive model for granular materials based on micromechanics;96
16.1;1. INTRODUCTION;96
16.2;2. DESCRIPTION OF FABRIC AND STRESS;97
16.3;3. KINEMATICS;98
16.4;4. CONSTITUTIVE RELATIONS;99
16.5;5. NUMERICAL RESULTS AND DISCUSSIONS;101
16.6;ACKNOWLEDGEMENT;102
16.7;REFERENCES;102
17;Chapter 10. Particle Simulations of the Flow of Smooth Spheres Between Bumpy Boundaries;106
17.1;1. DISCRETE ELEMENT SIMULATION;106
17.2;2. RESULTS;108
17.3;3. SUMMARY AND CONCLUSIONS;114
17.4;4. ACKNOWLEDEGEMENTS;114
17.5;5. REFERENCES;114
18;Chapter 11. The relaxation of the second moments in rapid shear flows of smooth disks;116
18.1;ACKNOWLEDGEMENTS;124
18.2;REFERENCES;124
19;Chapter 12. Boundary Conditions for Granular Flows at Randomly Fluctuating Bumpy Boundaries;126
19.1;1. INTRODUCTION;126
19.2;2. PRELIMINARIES;127
19.3;3. BOUNDARY CONDITIONS;129
19.4;4. A BOUNDARY VALUE PROBLEM;132
19.5;6. ACKNOWLEDGEMENTS;136
19.6;7. REFERENCES;136
20;Chapter 13. Experiments on ice-sphere flows along an inclined chute;138
20.1;1. INTRODUCTION;138
20.2;2. Experimental apparatus and procedures;139
20.3;3. Results and Discussions;140
20.4;4. Conclusions;144
20.5;5. Acknowledgement;144
20.6;6. REFERENCES;144
21;Chapter 14. Simulations of Rapid Bimodal Granular Flows
;146
21.1;1. INTRODUCTION;146
21.2;2. NUMERICAL SCHEME;147
21.3;3. BINARY COLLISION MECHANISM;148
21.4;4. Collisional Stresses;150
21.5;5. Collisional Shear Stress Profiles;151
21.6;6. SUMMAIY;154
21.7;7. REFERENCES;154
22;Chapter 15. Experimental Measurments of Particle Diffusion and Velocity Profiles in a Granular-Flow Mixing Layer;156
22.1;1. INTRODUCTION;156
22.2;2. EXPERIMENTAL APPARATUS AND INSTRUMENTATION;157
22.3;3. VELOCITY PROFILES;159
22.4;4. CONCENTRATION PROFILES
;161
22.5;5. CONCLUSIONS;164
22.6;REFERENCES;165
23;Chapter 16. Some aspects of bounded and unbounded shear flows of granular material;166
23.1;1. INTRODUCTION;166
23.2;2. COMPUTER SIMULATION MODELS AND APPROACHES;167
23.3;3. BOUNDED FLOWS IN THIN LAYERS AND WALL SLIP VELOCITIES;168
23.4;Acknowledgements.;171
23.5;REFERENCES;171
24;Chapter 17. Development of constitutive equations for granular materials with induced anisotropy during compaction processes;178
24.1;1. INTRODUCTION;178
24.2;2. EXPERIMENT;179
24.3;3. CONSTITUTIVE EQUATIONS;180
24.4;4. ANALYSIS;183
24.5;5. RESULTS OF SIMULATION AND DISCUSSION;185
24.6;6. CONCLUSIONS;187
24.7;7. REFERENCES;187
25;Chapter 18. A micromechanical study of penetration tests in granular material;188
25.1;1. INTRODUCTION;188
25.2;2. DEM/BEM SIMULATION OF CONE PENETRATION;189
25.3;3. RESULTS OF DEM/BEM SIMULATION;189
25.4;4. CONCLUDING REMARKS;194
25.5;5. ACKNOWLEDGEMENTS;196
25.6;6. REFERENCES;196
26;Chapter 19. Simulation of strain localization by means of rigid-plastic finite element method;198
26.1;1. INTRODUCTION;198
26.2;2. STRESS-STRAIN RELATIONSHIPS FOR RIGID-PLASTIC MATERIALS;198
26.3;3. RIGID-PLASTIC FINITE ELEMENT METHOD
;203
26.4;4. RESULTS OF ANALYSIS AND DISCUSSIONS;204
26.5;5. CONCLUSIONS;207
26.6;REFERENCES;207
27;Chapter 20. Plasticity theory for granular soils with induced anisotropy;208
27.1;1. INTRODUCTION;208
27.2;2. MICRO MECHANISM OF HARDENING;208
27.3;3. YIELD FUNCTION;212
27.4;4. REFERENCES;217
28;Chapter 21. Modified Double Slip Model with Fabric Anisotropy for Hardening Behavior of Granular Materials;218
28.1;1. INTRODUCTION;218
28.2;2. BRIEF REVIEW OF DOUBLE SLIP MODEL;218
28.3;3. MODIFIED STRESS METHOD FOR DESCRIPTION OF ANISOTROPY;219
28.4;4. MODIFIED DOUBLE SLIP MODEL;221
28.5;5. SIMPLE ANALYSIS OF ONSET CONDITION OF SHEAR BANDS;223
28.6;6. ANISOTROPIC BEHAVIOR AND SHEAR BAND ANALYSIS;225
28.7;7. CONCLUDING REMARKS;226
28.8;8. REFERENCES;226
29;Chapter 22. Elastoplastic modelling of soil anisotropy;228
29.1;1. INTRODUCTION;228
29.2;2. ELASTOPLASTIC MODEL FOR SAND WITH INHERENT ANISOTROPY;229
29.3;3.VERIFICATI0N BY TEST RESULTS;233
29.4;4. CONCLUSIONS;234
29.5;5. REFERENCES;234
30;CHAPTER 23. AN ELASTO-VISCOPLASTIC CONSTITUTIVE MODEL FOR CLAY BASED ON A TRANSFORMED STRESS TENSOR;238
30.1;ABSTRACT;238
30.2;l.DEFINITION OF TRANSFORMED STRESS TENSOR
;238
30.3;2.FAILURE OR YIELD CONDITIONS DEDUCED FROM THE INVARIANTS OF TRANSFORMED STRESS TENSOR;240
30.4;3.ELASTO-VISCOPLASTIC CONSTITUTIVE MODEL FOR CLAY BASED ON THE TRANSFORMED STRESS TENSOR;241
30.5;4.NUMERICAL EXAMPLES;242
30.6;5.DISCUSSIONS;242
30.7;6.CONCLUSIONS;243
30.8;7.REFERENCES;244
31;Chapter 24. Generalization of a Constitutive Law from Frictional Materials to Cohesive Materials;246
31.1;1. INTRODUCTION;246
31.2;2. STRESS AND STRAIN PARAMETERS BASED ON "EXTENDED SMP";247
31.3;3. TEST PROCEDURE;249
31.4;4. TEST RESULT ANALYSIS;250
31.5;5. CONCLUSIONS
;255
31.6;6. REFERENCES;255
32;Chapter 25. Stress in the Magnetic Powder Compressed in a Magnetic Field;256
32.1;Abstract;256
32.2;1. Introduction;256
32.3;2. Intergrain force due to a magnetic field;256
32.4;3. Stress due to a magnetic field;259
32.5;4. Magnetic field stress;263
32.6;5. Application to the practical problems;264
32.7;6. Conclusion;265
32.8;Reference;265
33;CHAPTER 26. MICROMECHANICS MODELLING FOR DEFORMATION AND FAILURE OFGRANULAR MATERIAL;266
33.1;1. INTRODUCTION;266
33.2;2. THREE-LEVEL MICROMECHANICAL APPROACH;266
33.3;3. DISCRETE BEHAVIOR AT CONTACT LEVEL;267
33.4;4. EQUIVALENT CONTINUUM BEHAVIOR AT MICRO-ELEMENT LEVEL;268
33.5;5. HOMOGENIZATION PROCESS AT REPRESENTATIVE UNIT LEVEL;270
33.6;6. Example;272
33.7;7. SUMMARY;274
33.8;8. REFERENCES;274
34;Chapter 27. The interface between fluid-like and solid-like behavior in granular flows ;276
34.1;ABSTRACT;276
34.2;1. INTRODUCTION;276
34.3;2. COMPUTER SIMULATION;276
34.4;3. RESULTS;278
34.5;4. CONCLUSIONS;284
34.6;5. ACKNOWLEDGEMENTS;285
34.7;6. REFERENCES;285
35;Chapter 28. On the structure of 3D shear flows;286
35.1;INTRODUCTION
;286
35.2;THE PARTICLE SIMULATION METHOD;288
35.3;THE VARIANCE OF THE CONCENTRATION FIELD;288
35.4;THE PROBABILITY DENSITY OF THE CONCENTRATION FIELD;291
35.5;MEAN VELOCITY GRADIENTS;292
35.6;THE GRANULAR TEMPERATURE FIELD;293
35.7;CONCLUSION;293
35.8;REFERENCES;294
36;Chapter 29. Microstructure in rapid gravity channel flow;296
36.1;1.INTRODUCTION
;296
36.2;2. ANALYSIS OF UNIFORMITY AND SLUG FORMATION;298
36.3;3. BINOMIAL DISTRIBUTION;301
36.4;4. LENGTH OF SLUGS OR PARTICLE GROUPS;301
36.5;5. CONCLUSIONS;303
36.6;6. REFERENCES;305
37;Chapter 30. Particle clustering: an instability of rapid granular flows;306
37.1;1. INTRODUCTION;306
37.2;2. GOVERNING EQUATIONS;308
37.3;3. LINEAR STABILITY ANALYSIS;309
37.4;4. NEUTRAL STABILITY;310
37.5;5. ROLE OF PERIODIC BOUNDARIES;313
37.6;6. CONCLUSIONS;314
37.7;7. REFERENCES;314
37.8;APPENDIX: COEFFICIENTS A, B, C, D;315
38;CHAPTER 31. A MODEL FOR THE TRANSITIONAL BEHAVIOR OF SIMPLE SHEAR FLOWS OF DISKS;316
38.1;1. INTRODUCTION;316
38.2;2. A SIMPLIFIED MODEL;318
38.3;3. RESULTS;320
38.4;4. DISCUSSION AND CONCLUSIONS;321
38.5;6. REFERENCES;325
39;Chapter 32. Distinct Element Simulation for Simple Shear Test of Granular Assembly;326
39.1;1. INTRODUCTION;326
39.2;2. METHOD;327
39.3;3. RESULTS;328
39.4;4. CONCLUSIONS;333
39.5;5. ACKNOWLEDGMENT;334
39.6;6. REFERENCES;334
40;Chapter 33. Simulations of the Collapse of Concrete Frames and Volcanic Eruption Motohiko HAKUNOa and Rimiro MEGUROb;336
40.1;1.INTRODUCTION;336
40.2;2.MODEL OF EDEN;337
40.3;CONCLUSION;345
40.4;REFERENCES;345
41;CHAPTER 34. NUMERICAL EVALUATION OF INTERNAL VARIABLES OF GRANULAR MATERIALS;346
41.1;1. INTRODUCTION;346
41.2;2. THE NUMERICAL MODEL;347
41.3;3. THE EXAMINATED VARIABLES;348
41.4;4. THE NUMERICAL EXPERIMENTS;349
41.5;5. FINAL CONCLUSIONS;356
41.6;6. REFERENCES;357
42;Chapter 35. Effects of particle shape on micromechanical behavior of granular materials;358
42.1;1. INTRODUCTION;358
42.2;2. PARTICLE SHAPE AND LIMITS OF CO-ORDINATION NUMBERS;359
42.3;3. TYPICAL TEST RESULTS;359
42.4;4. MICROMECHANICAL CHARACTERISTICS OF GRANULAR ASSEMBLIES;362
42.5;5. SPECIFIC MICROMECHANICAL FEATURES OF ASSEMBLIES OF ELLIPTICAL PARTICLES;366
42.6;6. CONCLUSIONS;367
42.7;7. REFERENCES;367
43;Chapter 36. The analogical bidimensional model of Schneebeli. Applications to the study of micromechanics of granular media;368
43.1;1. INTRODUCTION;368
43.2;2. THE MATERIAL OF SCHNEEBELI;368
43.3;3. EXPERIMENTAL METHODS FOR MICROMECHANICAL MEASURE-MENTS;373
43.4;4. REFERENCES;377
44;Chapter 37. Effects of disorder in the behaviour of the Schneebeli models;378
44.1;1. INTRODUCTION;378
44.2;2. NON LINEAR ELASTICITY OF PACKINGS OF GRAINS;379
44.3;3. LOCALIZATION OF THE DEFORMATION;384
44.4;REFERENCES;386
45;Chapter 38. Transport of Granules by Wind and Water:Micromechanics to Macromechanics in Geology and Engineering;388
45.1;Abstract;388
45.2;1. Introduction;388
45.3;2. Bedload Transport and Mixing of Sediments;389
45.4;3. Wind Transport and Aeolian Stratigraphy;391
45.5;4. Conclusion;393
45.6;5. Acknowledgements;395
45.7;6. References;395
46;Chapter 39. Channel Flow of a Concentrated Suspension;396
46.1;1. INTRODUCTION;396
46.2;2. MECHANICAL BALANCE LAWS;397
46.3;3. PLANE, RECTILINEAR, SHEAR FLOW;397
46.4;4. ENERGY BALANCE AND CONSTITUTIVE MODELS FOR FLUXES;399
46.5;5. VISCOUS FLUCTUATIONS;399
46.6;6. BOUNDARY CONDITIONS;401
46.7;7. RECTILINEAR FLOW;401
46.8;8. ACKNOWLEDGMENTS;405
46.9;9. REFERENCES;405
47;Chapter 40. Unified view of the mechanics of debris flow and bed-load;406
47.1;1. INTRODUCTION;406
47.2;2. CONSTITUTIVE RELATION OF DEBRIS FLOW;407
47.3;3. BED-LOAD EQUATION AND ITS APPLICATION;410
47.4;4. FINAL REMARKS;415
47.5;REFERENCES;415
48;Chapter 41. Rapid flows of sand-water mixtures at high concentration in a steep channel;416
48.1;1. INTRODUCTION;416
48.2;2. PARAMETERS GOVERNING FLOW SITUATION;417
48.3;3. EXPERIMENTS;417
48.4;4. ANALYSIS AND DISCUSSION;421
48.5;5. CONCLUSIONS;425
48.6;6. REFERENCES;425
49;Chapter 42. Microstructure and the acoustic properties of suspensions;426
49.1;1. INTRODUCTION;426
49.2;2. GOVERNING EQUATIONS;427
49.3;3. ANALYTICAL RESULTS;431
49.4;4. IMAGING LIQUEFACTION AND RESOLIDIFICATION;435
49.5;5. CONCLUSIONS;436
49.6;REFERENCES;437
50;CHAPTER 43. NONLOCAL DIFFUSION AND STRAIN-INDUCED LIQUIFICATION OF PARTICULATE MEDIA;438
50.1;ABSTRACT;438
50.2;1. INTRODUCTION;438
50.3;2. BACKGROUND;438
50.4;3. NONLOCAL DIFFUSION OF GRANULAR MEDIA IN THE ABSENCE OF EXTERNAL FIELDS;439
50.5;4. MONTE CARLO AND MOLECULAR DYNAMICS SIMULATIONS OF CONFINED PARTICULATE MATTER;441
50.6;5. DIFFUSION RESULTS;443
50.7;6. LIQUIFICATION RESULTS;444
50.8;6. ACKNOWLEDGEMENTS;445
50.9;7. REFERENCES;446
51;CHAPTER 44. NUMERICAL SIMULATION OF BROWNIAN PARTICLE DIFFUSION IN A TURBULENT CHANNEL FLOW;448
51.1;Abstract;448
51.2;1 Introduction;448
51.3;2 Turbulent Flow Field Velocity;449
51.4;3 Equation of Motion of Particles;451
51.5;4 Method of Dynamic Brownian Simulation;452
51.6;5 Results and Discussion;452
51.7;6 Conclusion;456
51.8;Acknowledgment;456
51.9;7 References;456
52;CHAPTER 45. PROPAGATION OF POWDER ENTROPY AND THERNOPHYSICAL STRUCTURE OF GRANULAR FLOW;458
52.1;ABSTRACT;458
52.2;1. INTRODUCTION;458
52.3;2. ORIGINAL PARTICLE DENSITY FUNCTION CHARACTERIZING THE PROPAGATION PROPERTY OF POWDER BULK DENSITY;459
52.4;3. THERHOPHYSICAL OBSERVATION OF POWDER BULK DENSITY OBSERVATION DURING SHEARING;462
52.5;REFERENCE;466
53;Chapter 46. Numerical Simulation of Inclined Chute Flows of Monodisperse, Inelastic,Frictional Spheres;468
53.1;SIMULATION TECHNIQUE;468
53.2;NUMERICAL METHOD;469
53.3;RESULTS;472
53.4;REFERENCES;476




