Shen / Yu | Iterative Learning Control over Random Fading Channels | Buch | 978-1-032-64637-4 | sack.de

Buch, Englisch, 356 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 702 g

Shen / Yu

Iterative Learning Control over Random Fading Channels


1. Auflage 2023
ISBN: 978-1-032-64637-4
Verlag: CRC Press

Buch, Englisch, 356 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 702 g

ISBN: 978-1-032-64637-4
Verlag: CRC Press


Random fading communication is a type of attenuation damage of data over certain propagation media. Establishing a systematic framework for the design and analysis of learning control schemes, the book studies in depth the iterative learning control for stochastic systems with random fading communication.

The authors introduce both cases where the statistics of the random fading channels are known in advance and unknown. They then extend the framework to other systems, including multi-agent systems, point-to-point tracking systems, and multi-sensor systems. More importantly, a learning control scheme is established to solve the multi-objective tracking problem with faded measurements, which can help practical applications of learning control for high-precision tracking of networked systems.

The book will be of interest to researchers and engineers interested in learning control, data-driven control, and networked control systems.

Shen / Yu Iterative Learning Control over Random Fading Channels jetzt bestellen!

Zielgruppe


Postgraduate and Professional Reference


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction  SECTION I Known Channel Statistics  2. Learning Control Over Random Fading Channel  3. Tracking Performance Enhancement by Input Averaging  4. Averaging Techniques for Balancing Learning and Tracking Abilities  SECTION II Unknown Channel Statistics  5. Gradient Estimation Method for Unknown Fading Channels  6. Iterative Estimation Method for Unknown Fading Channels  7. Learning-Tracking Framework Under Unknown Nonrepetitive Channel Randomness  SECTION III Extensions of Systems and Problems  8. Learning Consensus with Faded Neighborhood Information  9. Point-to-Point Tracking with Fading Communications  10. Point-to-Point Tracking Using Reference Update Strategy  11. Multi-Objective Learning Tracking with Faded Measurements


Dong Shen is a Professor at the School of Mathematics, Renmin University of China, Beijing, China. His research interests include iterative learning control, stochastic optimization, and distributed artificial intelligence.

Xinghuo Yu is the Distinguished Professor, a Vice-Chancellor's Professorial Fellow, and an Associate Deputy Vice-Chancellor at the Royal Melbourne Institute of Technology (RMIT University), Melbourne, Australia. He is a Fellow of the Australian Academy of Science, an Honorary Fellow of Engineers Australia, and a Fellow of the IEEE and several other professional associations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.